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Seasonal hydrologic forecasting has long played an invaluable role in the development and use of 

water resources.  Despite notable advances in the science and practice of climate prediction, 

current approaches of hydrologists and water managers largely fail to incorporate seasonal 

climate forecast information that has become operationally available during the last decade.   This 

study is motivated by the view that a combination of hydrologic and climate prediction methods 

affords a new opportunity to improve hydrologic forecast skill.  A relatively direct statistical 

approach for achieving this combination (i.e., downscaling) was formulated that used ensemble 

climate model forecasts with a six month lead time produced by the NCEP/CPC Global Spectral 

Model (GSM) as input to the macroscale Variable Infiltration Capacity hydrologic model to 

produce ensemble runoff and streamflow forecasts.  The approach involved the bias correction of 

climate model precipitation and temperature fields, and spatial and temporal disaggregation from 

monthly climate model scale (about 2 degrees latitude by longitude) fields to daily hydrology 

model scale (1/8 degrees) inputs.  A qualitative evaluation of the approach in the eastern U.S. 

suggested that it was successful in translating climate forecast signals to local hydrologic 

variables and streamflow, but that the dominant influence on forecast results tended to be 

persistence in initial hydrologic conditions.  The suitability of the statistical downscaling 

approach for supporting hydrologic simulation was then assessed (using a continuous 

retrospective 20-year climate simulation from the DOE Parallel Climate Model) relative to 

dynamical downscaling via a regional, meso-scale climate model.  The statistical approach 

generally outperformed the dynamical approach, in that the dynamical approach alone required 

additional bias-correction to reproduce the retrospective hydrology as well as the statistical 



 

approach.  Finally, using 21 years of retrospective forecasts for the western U.S., the skill of the 

GSM-based hydrologic forecasts was assessed relative to NWS Extended Streamflow Prediction 

(ESP) method forecasts.  Because of unexceptional GSM climate forecasts, the GSM-based and 

ESP hydrologic forecasts generally showed similar skill.  During strong ENSO anomalies, 

however, GSM-based forecasts yielded higher forecast skill in the Sacramento-San Joachin and 

Columbia River basins, but lower skill in the Colorado and upper Rio Grande River basins. 
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I. INTRODUCTION 

Hydrologic predictability varies widely between events striking at the shortest scales in time and 

space and those developing at the longest.  At shorter end of this continuum, the flash flood 

captures the imagination for the rapidity of its streamflow transition from dry to wet extremes, 

and for the immediacy of its consequences, often exacerbated by a lack of prior warning, for 

humans and infrastructure.  The timing of onset and the evolution of a flash flood are very 

difficult to predict because the processes involved, in the land surface and the atmosphere, persist 

only at time scales on the order of mere minutes to hours.  Fortunately, most other challenges in 

water management, and those having the more lasting effects on human society, involve 

atmospheric and hydrologic variability over relatively larger scales in time and space.  The Great 

Flood of 1927 along the Mississippi River, which at its peak carried three times the flow of the 

Mississippi River flood in 1993, followed months of extremely wet, cold climate which swelled 

tributaries in at least a dozen states throughout the midwestern U.S. (Barry, 1997).  Severe 

droughts, such as the 1930s U.S. Dust Bowl drought that occasioned John Steinbeck’s novel “The 

Grapes of Wrath” and the 1970s drought in the Sahel of northwest Africa, generally result from 

climate anomalies lasting years to decades.  Both flood and drought extremes can be manifest at 

the sub-continental scale.   

This dissertation focuses on monthly to seasonal hydrologic forecasting, which in many ways is a 

more tractable problem than flash flood or decade-long drought scale prediction.  The governing 

geophysical phenomena for monthly to seasonal climate and hydrologic variations derive from 

ocean-atmosphere and land-atmosphere interactions that have much greater inertia than the 

combination of convective precipitation and infiltration excess runoff processes that lead to most 

flash floods.  The slower evolution of the particular ocean and land features (e.g., oceanic thermal 

gradients and snow pack or soil moisture) that serve as boundary conditions for the atmosphere 

affords a greater opportunity for observations, and for prediction at lead times long enough to be 

of practical use. 
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Hydrologists have employed a variety of methods for seasonal streamflow forecasting.  The most 

basic forecast of historically observed streamflow averages (climatology) is readily surpassed in 

accuracy by methods that capture the persistence in streamflow itself and/or the predictive value 

of the physical drivers of streamflow (primarily snowpack, where relevant, and soil moisture).  

Since at least the first half of the 20th century, graphical curve methods and so-called “index 

methods” (both essentially regression) were used to forecast seasonal streamflow volumes (e.g., 

Parshall, 1948; MacLean, 1948) and derivatives of these methods still underpin the approaches of 

U.S. agencies charged with streamflow forecasting such as the Natural Resource Conservation 

Service (NRCS) (Garen, 1992).  By the 1970s, statistical methods adopted for seasonal 

streamflow forecasting had evolved in complexity, and included, for instance, stochastic 

autoregressive (e.g., Burges and Johnson, 1973) and moving average or combined models (Box 

and Jenkins, 1976).   

The rise of computing in the 1950s, however, fostered the implementation of digital conceptual 

(also called physical) hydrologic models, among the first of which was the Stanford Watershed 

Model (SWM) of Crawford and Linsley (1966).  In contrast to the NRCS’s statistical forecasting 

framework, the dynamical simulation approach took root in the National Weather Service (NWS) 

with the NWS River Forecasting System (NWSRFS) model (Anderson, 1973), an offspring of 

SWM.  NWSRFS is currently used in a procedure called Extended Streamflow Prediction (ESP: 

Twedt et al., 1977), in which historically observed streamflow sequences are combined with an 

initial condition estimate to generate a probability distribution of forecast outcomes.  The basic 

concept of ESP is common to most physical approaches to hydrologic prediction in that it relies 

on the accurate specification of both an initial hydrologic state and of future climate.  The first 

task is now reasonably well accomplished using physical hydrologic models (the more detailed of 

which simulate the land surface water and energy balance with spatially distributed 

representations of vegetation and soil water storage, snowpack, and associated moisture and 

energy fluxes), given adequate meteorological inputs prior to the forecast date, and supported 

where possible by timely snow or soil moisture observations.   

For the second task, the specification of future climate, however, hydrologists traditionally have 

used climatology in one form or another.  Only in the last decade has a body of work been 

initiated that links with the forecasting progress made in the atmospheric and oceanographic 
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sciences.  Scientists have long studied relationships between seasonal climate patterns and ocean 

phenomena, by some accounts since the turn of the 20th century (Goddard et al., 2001).  In the last 

several decades, much insight has been gained into the role of ocean thermal dynamics and 

associated atmospheric circulation patterns in determining regional climate (e.g., Livezey, et al., 

1997; Shukla, 1998; Palmer and Anderson, 1994), in part due to improvements in monitoring 

(both remote and direct) of the ocean and atmosphere, with consequent improvements in seasonal 

climate forecasting (McPhaden et al., 1998).  The most widely recognized of these ocean-

atmosphere “teleconnections”, and the source of most seasonal climate predictability, is the El-

Nino Southern Oscillation (ENSO) (Philander, 1990), although other ocean-atmosphere dynamics 

such as the Pacific Decadal Oscillation (PDO) are also thought to constrain North American 

climate (Mantua et al., 1997; Hamlet and Lettenmaier, 1999b).  The sea surface temperature 

(SST) defined ENSO state evolves gradually enough that it can be forecasted with moderate skill 

at lead times of months to seasons, either with statistical methods or dynamic coupled ocean-

atmosphere general circulation models (OAGCMs) (Barnston et al., 1996, 1999; Livezey, 1990; 

Kumar et al., 1996; Livezey et al., 1996).  A combination of statistical and dynamical techniques 

for forecasting SSTs and associated seasonal climate has been adopted at a number of research 

centers (e.g., National Centers for Environmental Prediction (NCEP), NASA Seasonal to 

Interannual Prediction Project, Columbia University’s International Research Institute and the 

European Center for Medium Range Weather Forecasting), resulting in sophisticated operational 

systems for seasonal climate forecasting. 

Climate forecasts are generally presented with the sub-continental region (e.g., the southwestern 

U.S.) as the smallest spatial unit, in part because of the long-recognized difficulty of atmospheric 

models in reproducing observed climate at smaller scales (e.g., less than ~107 km2) (IPCC, 1996; 

Anderson and Stern, 1996) and because of computational constraints.  In addition to the scale 

problem, the land surface variables of greatest interest to hydrologists and to society, such as 

surface precipitation and runoff, are generally predicted less reliably in climate models than are 

features of large scale circulation (see, e.g., Risbey and Stone, 1996).  As a result, connecting 

climate forecasts to the scales and features of the hydrosphere in which human society is often 

most interested -- regional and smaller, for land surface variables – has been problematic.    
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Complementing hydrologists’ interest in bridging the scale gap (generally termed downscaling), 

the climate research community has sponsored a number of initiatives to foster use of climate 

simulations for hydrologic and water resources objectives.  The primary objective of the World 

Climate Research Program’s supported Global Energy and Water Cycle Experiment (GEWEX) 

Continental-Scale International Project (GCIP), for instance, is “to demonstrate skill in predicting 

water resources on timescales of up to seasonal and annual”, with a particular emphasis on 

improving “the utility of hydrologic predictions for water resources management” (National 

Research Council, 1998).   

Atmospheric scientists, and to a lesser extent, hydrologists have developed a number of 

downscaling methods.  These include dynamical approaches that use finer resolution (mesoscale) 

atmospheric models nested within boundaries at which fluxes are taken from OAGCMs (e.g., 

Cocke and LaRow, 2000; Giorgi and Mearns, 1991), statistical approaches (Wilby and Wigley, 

1997; Wilby et al., 1998) and climate-analog approaches (IPCC, 1996; Leung et al., 1999).  

Comparisons of dynamical and statistical methods (Murphy, 1999; Kidson and Thompson, 1998; 

Hay et al., 2002) indicate that in addition to being numerically cumbersome, dynamic 

downscaling must be accompanied by further statistical adjustment to address model biases.  Of 

these approaches, hydrologists have tended to opt for simple strategies such as OAGCM-

conditioned compositing, in which OAGCM output is used to guide the construction or weighting 

of an ensemble of historically observed meteorological time series, which subsequently are used 

as input to a hydrologic model (e.g., Georgakakos et al., 1998; Leung et al., 1999).  A variation 

on this approach is to derive the conditioning signal from SST-classified climate modes, such as 

PDO and ENSO (Hamlet and Lettenmaier, 1999a-b).  With notable exceptions (e.g., Wilby et al., 

2000; Kim et al., 2000; Hay et al., 2002; Hamlet and Lettenmaier, 1999b), few researchers have 

examined in much detail the utility of downscaling methodologies for supporting hydrologic 

simulation, particularly for forecasting purposes. 

The relative dearth of research utilizing climate model forecasts to improve hydrologic 

forecasting at monthly to seasonal lead times scale motivates the science and engineering 

questions that this dissertation seeks to address: 

1. Can we implement a relatively direct statistical approach for using climate model 

ensemble forecasts as forcings for hydrologic ensemble forecasts, given that the approach 
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must (a) eliminate or reduce climate model regional biases and (b) downscale the outputs 

from the multi-degree spatial scale (of the climate model) to scales of interest for 

hydrologic forecasting, while (c) preserving climate model forecast information? 

2. How would such an approach perform relative to more physically based (but 

computationally intensive) method for deriving hydrologic forecasts, such as dynamical 

downscaling? 

3. Where in the western U.S. and at what times of the year does the forecast approach yield 

improved skill in predicting streamflow and other hydrologic variables relative to 

methods currently used in practice? 

Research addressing these questions is the focus of the following three chapters.  Chapter II 

(published as:  Wood, A.W., Maurer, E.P., Kumar, A. and D.P. Lettenmaier, 2002.  Long range 

experimental hydrologic forecasting for the eastern U.S., Journal of Geophysical Research, Vol. 

107, D20, October) presents an approach for translating climate model ensemble forecasts into 

hydrologic forecasts, and demonstrates it for a case study in the eastern U.S.  Using a 

retrospective climate model simulation, Chapter III (accepted for publication in a special issue of 

the journal Climatic Change:  Wood, A.W., Leung, L. R., V. Sridhar and D.P. Lettenmaier, 

Hydrologic implications of dynamical and statistical approaches to downscaling climate model 

outputs) assesses the suitability of the approach through comparison with variations that 

alternatively omit elements of it, and/or include an additional dynamical downscaling step.  

Chapter IV (submitted to Journal of Climate) describes the implementation of the forecasting 

approach over the western U.S. and, via retrospective analysis, estimates the skill of the forecasts 

and the degree to which the skill arises from persistence of initial conditions or from climate 

model forecast accuracy.  Taken as a whole, the research is intended to offer insights into the 

potential for climate and hydrologic modeling, with simple downscaling techniques, and to form 

the basis for advanced seasonal hydrologic forecasting throughout the western U.S.   
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II. AN ENSEMBLE-BASED HYDROLOGIC FORECASTING 
APPROACH 

This chapter has been published in its current form in the Journal of Geophysical Research:  

Wood, A.W., Maurer, E.P., Kumar, A. and D.P. Lettenmaier, 2002.  Long range experimental 

hydrologic forecasting for the eastern U.S., Journal of Geophysical Research, Vol. 107, D20, 

October. 

1. INTRODUCTION 

Great strides have been made over the last decade in understanding of climate teleconnections, as 

manifested by ocean-atmosphere phenomena resulting in large part from thermal inertia of the 

oceans (see, e.g. Livezey, et al., 1997; Shukla, 1998; Koster et al., 1999), such as El Niño-

Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO) and the North Atlantic 

Oscillation.  Exploitation of understanding of these phenomena has resulted in demonstrable 

improvements in long-lead (months to years) climate forecasting.  These forecasts are based on 

coupled ocean-atmosphere general circulation models (OAGCMs) (Barnston et al., 1999; 

Livezey, 1990; Kumar et al., 1996; Livezey et al., 1996) or statistical methods such as canonical 

correlation analysis (e.g., Barnston et al., 1996).  A recent trend has been to use ensemble 

forecasting approaches in which a global land-atmosphere-ocean model (initialized with 

atmospheric, land surface and ocean conditions at forecast time) is run into the future for forecast 

horizons of months to years, using prescribed sea surface temperatures (SSTs) derived using one 

of a variety of forecast methods.  Although the atmosphere is essentially chaotic, the prescribed 

SSTs effectively constrain the evolution of model forecasts.  By perturbing the initial atmospheric 

conditions and repeating the simulation a number of times, an ensemble of forecasts is 

constructed which represents the range of global atmospheric conditions that may occur over the 

forecast period.   

Much of the research in this area has focused on atmospheric simulation outputs having the large 

sub-continental region (e.g., the southwestern U.S.) as the minimum scale, in part because of the 

long-recognized difficulty of atmospheric models in reproducing observed climate at smaller 
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scales (e.g., less than 107 km2) (IPCC, 1996, Section 6).  As a result, connecting climate forecasts 

to the scales and features of the hydrosphere in which human society is often most interested -- 

regional and smaller, for land surface variables – has been problematic.  In addition to the scale 

problem, the land surface variables of greatest interest to society, such as surface precipitation 

and runoff, are generally predicted less reliably than features of large scale circulation (see, e.g., 

Risbey and Stone, 1996).  In parallel with global scale predictions, however, a number of 

downscaling methods have evolved including dynamical approaches that use finer resolution 

(mesoscale) atmospheric models (e.g., Cocke and LaRow, 2000; Giorgi and Mearns, 1991), 

statistical approaches (Wilby and Wigley, 1997; Wilby et al., 1998) and climate-analog 

approaches (IPCC, 1996; Leung et al., 1999; Georgakakos et al., 1998).  Recent comparisons of 

dynamical and statistical methods are given in Murphy (1999) and Kidson and Thompson (1998). 

At much smaller scales, hydrologists have long been concerned with understanding and 

reproducing the dynamics of the land surface water and energy balance.  Hydrologic study has 

mostly focused on the local scale of catchments or basins (on the order of 102-103 km2) at which 

water management is effected.  Much applied hydrologic prediction work, for instance efforts to 

abstract the physics of runoff generation and groundwater behavior, has been intended to benefit 

water resources end uses, such as irrigation, water supply, hydropower generation, fisheries 

management and navigation.  An intersection of the interests of hydrologists and climate 

modelers has occurred over the last decade as the difference in spatial scales has narrowed.  

While general circulation models now often operate at spatial resolutions of one to three degrees, 

macroscale hydrologic models (e.g., those of Liang et al., 1994; Leavesley and Stannard, 1995; 

Beven and Kirkby, 1979) have increased in scale and geographical coverage so that modeling of 

continental scale river basins (e.g., the Columbia, the Mississippi) is now possible.  Furthermore, 

the land surface parameterizations in coupled land-atmosphere-ocean models increasingly 

resemble or borrow from macroscale hydrology model representations, and vice versa (Koster et 

al., 2000; Ducharne et al., 2000).  In consequence, an operational linkage of hydrologic and 

climate forecasting models is now being pursued at a number of research centers.  

Although the motivation for development of macroscale hydrologic models has been, in part, to 

improve representation of the land surface in coupled land-atmosphere-ocean models, they can 

also be implemented using one-way forcing from OAGCMs, such as ensemble climate forecasts.  

 



 8

While conceptually simpler than operation in a fully coupled mode, the one-way linkage is still 

hampered by the need to address regional biases in OAGCM climate simulation outputs.  These 

biases are substantial enough to preclude direct use in hydrologic modeling of OAGCM output 

fields such as surface precipitation and temperature (Leung et al., 1999; Chen et al., 1996; Roads 

et al., 1999).   

Hydrologists have tended to surmount this difficulty using simple strategies such as OAGCM-

conditioned compositing, in which OAGCM output is used to guide the construction or weighting 

of an ensemble of historically observed meteorological time series, which subsequently is used as 

input to a hydrologic model (e.g., Georgakakos et al., 1998; Leung et al., 1999).  In theory, at 

least, the probabilistic assessment of differences between streamflow ensembles resulting from 

these hydrologic simulation and streamflow ensembles based on observed climatology (inputs 

without conditioning) may then support recommendations for operational decisions by water 

resources system managers.  A variation on this approach is to derive the conditioning signal 

from a typecast of the present year related to SST-classified climate modes.  Hamlet and 

Lettenmaier (1999a, b), for instance, demonstrated a simplified method of long range forecasting 

(up to a one year lead) for the Columbia River basin.  The method utilized resampling of previous 

observed hydrometeorological data for years with apparently analogous climatic characteristics, 

determined by ENSO and PDO-based compositing.  The shortcoming of this method is that it 

requires partitioning of the historic record into climate categories, which can result in statistical 

problems when the number of years in a given class is small.  Furthermore, there is an implicit 

assumption that the classification method is stable over time. 

One way climate model-hydrology model linkages were explored by Kim et al. (2000), who 

applied a mesoscale regional climate model over northern California for downscaling one 

member of an OAGCM-based 3-month forecast ensemble during the 1997/98 El Nino event.  

Using the spatially distributed TOPMODEL (Beven and Kirkby, 1979) for hydrologic simulation, 

they found that the largest hydrologic forecast errors resulted from GCM errors in precipitation 

prediction.  For a smaller catchment in Colorado, Wilby et al. (2000) compared statistical and 

dynamical downscaling methods, using a regional climate model, for translating National Centers 

for Environmental Prediction (NCEP) / National Center for Atmospheric Research (NCAR) 

reanalysis (Kalnay et al., 1996) output into local precipitation and temperature forcing time series 
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for a hydrologic model.  Their results underscored the need for bias correcting climate model 

outputs and confirmed the view that while statistical and dynamical approaches yield similar 

downscaling skill, statistical techniques are less computationally demanding.  

This paper describes an exploratory hydrologic forecast system that uses monthly ensemble 

climate forecasts of monthly total precipitation (Ptot) and monthly average temperature (Tavg) 

for six-month lead times produced by the NCEP Global Spectral Model (GSM), an OAGCM.  

We test a relatively simple approach for linking global ensemble forecasts from coupled ocean-

land atmosphere models with macroscale hydrologic models, with the intent of improving 

hydrologic prediction capabilities for soil moisture, runoff and streamflow. 

The region chosen for the study was the eastern U.S, defined as the area east of the Mississippi 

River drainage plus the Ohio River basin, but excluding the Laurentian Great Lakes basin, for a 

forecast period from May to October, 2000.  This period was selected because a severe drought 

was anticipated for the southeastern U.S. as a result of much below normal soil moisture and 

streamflow during late winter and early spring, 2000 (reflected as early as December 1999 in 

federal agency outlooks such as the National Drought Mitigation Center’s weekly Drought 

Monitor and the Climate Prediction Center’s U.S. Drought Monitor).  During this period, SST 

anomalies in the tropical Pacific were returning to near-normal from a prior ENSO cold phase (La 

Nina) episode.  Lingering effects of the cold phase, which in the southeastern U.S. have been 

correlated with dryness, had the potential to compound the existing soil moisture deficits.  We 

also evaluated the method for a study period (beginning in November 1997) during which SST 

anomalies reflected a strong El Nino event.  

2. APPROACH 

Our forecast approach uses GSM’s surface forecast fields (Ptot and Tavg) to create daily forcing 

ensembles for the Variable Infiltration Capacity (VIC) macroscale physical hydrology model.  

Hydrologic model forecasts are produced by first initializing VIC model states with a spin-up 

period based on observed meteorology prior to the start of forecast, and then driving the model 

with ensemble forecast meteorology through the end of the forecast period.  This basic 

framework is illustrated in Figure 2.1. 
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Figure 2.1 Experimental long-lead hydrologic forecasting approach 

 

2.1 Global Spectral Model Ensemble Generation 

Each month, NCEP’s Climate Modeling Branch generates a 20-member ensemble of six month 

lead climate forecasts, simulated with GSM.  The forecasts are accompanied by a 210-member 

ensemble of climate hindcasts (also six months long, matching the calendar months of the 

forecasts) representing the period 1979-99 (21 years).  The 20 forecast ensemble members are 

produced by using 20 different atmospheric initializations with predicted SSTs in the tropical 

Pacific Ocean as of the date of the forecasts.  The hindcast ensemble generation process is 

similar, except that the ensemble members are produced by using 10 different atmospheric 

initializations with observed SSTs for each of the 21 years in the 1979-99 hindcast.  The different 

atmospheric initializations are in each case drawn from a sequence of atmospheric analysis fields 

at the beginning of the forecast initialization month (the month prior to the six month forecast 

period), spaced 12 hours apart.  This process is repeated every month, and Ptot and Tavg, among 

other variables, are archived.  In the forecast runs, predicted SSTs over the tropical Pacific 

domain are specified based on the NCEP OAGCM (Ji et al., 1998).  At the time of our research, 

GSM forecasts were run at T42 horizontal resolution (2.8125 degrees latitude/longitude).  

GSM is actually run at a time steps on the order of an hour or less, and therefore in principal the 

temporal disaggregation is not necessary.  Use of monthly ensembles, however, greatly reduces 

the data distribution and handling overhead.  Because our downscaling approach (Section 2.3.2) 

imposes plausible daily temporal structure to the monthly GSM forecast products as part of the 

same process that spatially disaggregates the GSM products to 1/8 degree spatial resolution,  the 
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use of the monthly GSM output is not only adequate for purposes of our hydrologic forecast 

objectives, but also streamlines the process considerably.  

2.2 VIC Macroscale Hydrology Model 

The VIC model (Liang et al., 1994; 1996; 1999) is a semi-distributed grid-based hydrological 

model which parameterizes the dominant hydrometeorological processes taking place at the land 

surface-atmosphere interface.  A mosaic representation of land surface cover and 

parameterizations for infiltration and the spatial variability of precipitation account for sub-grid 

scale heterogeneities in key hydrological processes.  The model uses three soil layers and one 

vegetation layer with energy and moisture fluxes exchanged between the layers.  The model has 

been applied to such large continental rivers as the Columbia (Nijssen et al., 1997), the Arkansas-

Red (Abdulla et al., 1996), and the Mississippi (Maurer et al. 1999; Cherkauer and Lettenmaier, 

1999), and, as part of the Land Data Assimilation System (LDAS) project (Mitchell et al., 2000), 

to the continental U.S. (Wood et al., 1998).  A more complete description of model processes can 

be found in Liang et al. (1994; 1996).  Routing of runoff generated within a grid cell is routed to 

the stream gauge locations using methods described by Lohmann et al. (1998a, b).  The VIC 

model uses vegetation and soil parameters produced for use by LDAS and described in Maurer et 

al. (2001).   

2.2.1 Forcings 

VIC model forcings are used both in driving the hydrologic model during a one year spin-up 

period, and, via resampling, in assembling the daily forecast sequences.  Because the 

meteorological variables most widely available in long-term data archives are daily precipitation 

and daily temperature minimum and maximum, we estimate most of the other forcing variables 

required by the VIC model (e.g., downward solar and longwave radiation, humidity) from this 

minimum set of variables using methods described in Maurer et al. (1999).  Wind speed data are 

taken from the NCEP/NCAR reanalysis (Kalnay et al., 1996), which are available to within a 

month of real time.  The observational data are typically taken from National Climatic Data 

Center (NCDC) Cooperative Observer (Co-op) Stations, which are available on the web within 2 

to 4 months of real time.  For real time data (bridging the gap between the end of the available 

CO-OP data and the forecast date), we used data available from the LDAS project.  The LDAS 
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precipitation data are so-called Stage IV observations, a combination of radar and station data 

produced by NCEP.  Temperature data are from the Eta Data Assimilation System (EDAS), and 

are essentially an analysis product from the NCEP Eta weather forecast model, run over the 

continental U.S.  LDAS also produces a real-time wind data set (another EDAS product).  All 

LDAS data are produced on a geographic 1/8 degree grid, for the area from latitude 25N-53N, 

longitude 67W-125W.  Typical monthly biases in this product revealed by our preliminary 

verification were a spatially averaged (over the study domain) bias of -5 percent in monthly 

precipitation totals, -1.5 oC in average maximum temperature and +1.5 oC in average minimum 

temperature.  LDAS wind speeds appear to be significantly higher than those produced by the 

NCEP/NCAR reanalysis, although recent EDAS modifications appear to have reduced the 

discrepancy somewhat.  Currently, we use the LDAS product without adjustment.  

2.2.2 Eastern U.S. application 

The VIC model was implemented at 1/8 degree latitude/longitude resolution (~150 km2 cell area) 

over the domain shown in Figure 2.2.  The domain includes the Ohio River basin, which drains 

the easternmost portion of the Mississippi River basin, and an East Coast region which includes 

24 coastal drainage basins, 17 of which flow east-southeast to the Atlantic Ocean, and 7 of which 

drain southward to the Gulf of Mexico.  Within the model domain, runoff in smaller subbasins 

was routed to produce streamflow estimates at U.S. Geological Survey (USGS) river gauging 

station locations.   
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Figure 2.2 Hydrologic forecasting model domain, including the Ohio River basin (light 

gray) and the East Coast drainages (dark gray).  Runoff in numbered basins was 
routed to produce streamflow:  (1) Ohio; (2) Alabama-Coosa-Tallapoosa (ACT); 
(3) Apalachicola-Chattahoochee-Flint (ACF); (4) Potomac; and (5) Delaware 
River. 

 

The Ohio River basin and East Coast models simulate areas of about 600,000 and 1.1 million 

km2, respectively.  Subbasins calibrated for streamflow forecasting included the Ohio River, the 

Delaware River, the Potomac River, the Apalachicola-Chattahoochee-Flint (ACF) River system 

and the Alabama-Coosa-Tallapoosa (ACT) River system.  Principal streamflow routing nodes 

were the Apalachicola River at Sumatra, FL (USGS station 12359170), the Alabama River at 

Claiborne L&D near Monroeville, AL (USGS station 02428400), the Potomac River near 

Washington, D.C. - Little Falls (USGS station 01646500) and the Delaware River at Trenton, NJ 

(USGS station 01463500), and the Ohio River at Metropolis, IL (USGS station 03611500).   

The model forcing data spanned the period 1950-current, where the current date evolved during 

the experiment.  Model calibration was accomplished by varying parameters related to infiltration 

and subsurface drainage, with the aim of reproducing monthly streamflow volumes while 
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preserving the general features of the daily response (e.g., daily average flow peaks and 

recessions).  Sample calibration results for each basin are shown in Figure 2.3.  
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Figure 2.3 Calibration results for five streamflow forecasting basin gauging locations 
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2.3 Hydrologic Forecasting Approach 

To translate long range climate predictions to the realm of hydrology, regional biases and the 

temporal and spatial scale mismatch between models must be resolved.  This section describes 

our bias-correction and downscaling approach and its demonstration as a proof of concept 

exercise. 

2.3.1 Unbiasing of climate model ensembles 

The premise of the bias correction step is that despite biases in GSM-simulated climate, the GSM 

forecasts may have a useful signal if interpreted relative to the GSM climatology rather than the 

observed climatology.  The GSM climatology is defined by the monthly distributions (for months 

one to six in the forecast period, separately) of simulated GSM Ptot and Tavg taken from the 

GSM hindcast simulations (i.e., the 210 simulated values for each of the six forecast period 

months, for each variable).  The monthly observed climatology spans the same time period as the 

GSM output (1979-99) and was created from CO-OP station daily observations averaged to a 

monthly timestep, and to the GSM grid resolution; hence the observed monthly distributions for 

Ptot and Tavg are defined by only 21 values per variable.  Bias correction is achieved by 

replacing GSM forecast values for Tavg and Ptot with values having the same percentiles (non-

exceedence probabilities) with respect to the observed climatology that the original GSM values 

had with respect to the GSM climatology, for a given month.  The forecasts are subsequently 

expressed as anomalies (temperature shift, and precipitation percentage) with respect to the 

observed monthly means for the 21-year climatology period.  Bias correction is performed at the 

GSM scale, and each GSM cell (23 cells spanned the study region) is treated individually, 

defining its own set of monthly distributions.   

For example, bias-correcting a monthly Tavg forecast for January – June requires the following 

steps: 

1. The January GSM Tavg is assigned a non-exceedence probability (or percentile) within 

the 210-value GSM climatology distribution for January Tavg. 

2. A January Tavg having the same non-exceedence probability in the observed climatology 

is then calculated. 
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3. Steps 1 and 2 are repeated for Tavg in months February through June, and the entire 

process is repeated for each of the ensemble forecast members.   

4. Finally, the bias-corrected forecasts are expressed as additive (for Tavg) and 

multiplicative (for Ptot) anomalies. 

In the precipitation and temperature bias correction scheme, when either the GSM output or the 

associated percentile falls above or below the range of empirical Weibull percentiles (equal to 

1/N+1 and N/N+1, where N is the number of members from which the probability distribution is 

estimated), theoretical probability distributions are fit to the data to extend the empirical 

distributions.  This becomes necessary because the historical climatology is defined by the 21 

years of historical observations, whereas the model ensembles consist of a larger 210-member 

data set.  For low precipitation, an Extreme Value Type III (Weibull) function was used, with a 

minimum lower bound of zero; whereas for extreme high precipitation, an Extreme Value Type I 

(Gumbel) distribution was employed.  For temperature, a normal distribution was used for both 

minimum and maximum. 

The need for bias correction is demonstrated by an example that compares GSM’s precipitation 

and temperature climatology for one typical cell (centered on latitude 37.97N, longitude 87.19W, 

in the Ohio River basin) with observed values (Figure 2.4).  As alluded to in the introduction, 

biases of the magnitude shown (e.g., up to 15 degrees Celsius for Tavg in August) are 

occasionally found in climate model simulations of surface variables, particularly if one examines 

the output for individual cells rather than for a region or continent.  The lack of agreement with 

observations stems in part from poor climate model resolution of sub-grid scale land surface 

related heterogeneities, such as orography or soil wetness.  Such biases preclude the use of the 

climate model output as a direct input to the hydrology model.   
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Figure 2.4 April 2000 GSM climatology for monthly total precipitation and average 

temperature, compared with observations averaged over the corresponding 

geographic area.  The data are for the GSM computational cell centered on 

latitude 37.97N, longitude 87.19W, in the Ohio River basin. 

 

2.3.2 Downscaling of long range ensemble forecasts 

Following bias correction, the monthly GSM-scale forecast anomalies are translated to the spatial 

and temporal scale of VIC model inputs.  The Tavg and Ptot anomalies are spatially interpolated 

to the 1/8 degree VIC cell centers, and applied to the monthly observed 1979-99 1/8 degree cell 

means (derived from Co-op station observations as described in Section 2.2.1), to create monthly 

forecast sequences at the VIC model scale, in the following manner: 

TVICfcst(m, e) = TVICmean(m) + TANOMfcst(m, e)  

PVICfcst(m, e) = PVICmean(m) * PANOMfcst(m, e) 

Here TVICfcst(m, e) is the forecast monthly Tavg for a given VIC cell in month m (m = 1 to 6) of a 

forecast ensemble member e (e = 1 to 20).  TVICmean(m) is the observed 1979-99 mean Tavg for 
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month m, and TANOMfcst(m, e) is the additive Tavg forecast anomaly for month m and ensemble 

member e.  Likewise, PVICfcst(m, e) is the forecast monthly Ptot for a given VIC cell in month m 

of a forecast ensemble member e, PVICmean(m) is the observed 1979-99 mean Ptot for month m, 

and PANOMfcst(m, e) is the multiplicative Ptot forecast anomaly for month m and ensemble member 

e.  The addition of temperature anomalies will hereafter be referred to as shifting and the 

multiplication by precipitation anomalies as scaling.  

The final step in preparing the forecasts for input to the VIC model is to replace the monthly 

mean sequences by daily sequences.  For each month (e.g., January) in each forecast ensemble, 

one year from the climatology period is randomly selected (e.g., 1988).  For each VIC cell, the 

observed daily values of precipitation for the selected year and month (e.g., 1988, January) are 

scaled so that the monthly total precipitation is equal to the forecast Ptot for the ensemble 

member and month.  The resulting values of daily precipitation become the daily sequence for 

that month of the particular forecast ensemble member.  Daily Tmin and Tmax from the same 

selected year (e.g., 1988) are shifted equally so that their average, (Tmin + Tmax)/2, reproduces 

the monthly forecast Tavg for the ensemble member and month; and the resulting values of Tmin 

and Tmax become the daily sequence for that month of the particular forecast ensemble member.  

Daily wind speed is taken without adjustment from the VIC daily values for the selected year and 

month, forming the fourth daily forcing used by the VIC model.  The same year is used to select 

the daily data for a given month of an ensemble forecast member in every cell of a study area (the 

Ohio River basin and East Coast).  Using the same year-month combination for resampling over 

the large scale hydrologic units helps to preserve a degree of spatial synchronization in the 

weather components driving hydrologic response.  The random sampling of a climatology year 

for selection of daily sequences is repeated for each month in each forecast ensemble member.   

We performed a test of this method using observed total monthly precipitation and average 

temperature timeseries for 1979-99, aggregated to the GSM scale, as raw forcings over the Ohio 

River drainage area.  These large scale forcings were processed (using the interpolation and 

temporal disaggregation steps) into daily VIC scale forcings, with which we simulated 

streamflow.  Figure 2.5 shows that the method is able to reproduce the mean and variance of the 

basin streamflow climatology without introducing substantial method-related bias.   
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Figure 2.5 Climatology period (1979-99) streamflow distribution simulated from daily VIC 

1/8 degree observations, compared to a parallel simulation from monthly GSM-

scale (2.8125 degree) spatially averaged observations, after the downscaling and 

disaggregation procedure 
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2.3.3 Producing hydrologic forecasts 

Near the 10th day of each month, the GSM ensemble forecasts become available and we process 

the monthly GSM output into format suitable for input to VIC.  By the 20th day of the month 

during the period April - September 2000, the hydrology model state was initialized through that 

current date using a one year spin-up simulation, the forcings for which were the gridded 

observational data described in Section 2.2.1.  Once the current hydrology model moisture states 

were obtained, the 20 forecast ensemble members were run to produce an ensemble of 6-month 

long hydrologic forecasts, beginning the following month.   

In addition to the forecast ensemble, we also generated a hydrologic ensemble hindcast by 

applying the procedures described in Sections 2.3.1-2.3.2 to the ensemble members of the GSM 

hindcast in place of the forecast.  This hydrologic ensemble hindcast yields a hydrologic 

climatology for 1979-99 derived by the methods used to derive the hydrologic ensemble forecast.  

Rather than comparing the forecast ensemble results directly to the empirial probability 

distribution of observed streamflow or of model-simulated fields (e.g, grid cell runoff or soil 

moisture) based on observations, we compared the hydrologic ensemble forecasts with the 

hydrologic ensemble hindcast.  In this experiment, we wanted to ensure that any incidental 

forecast error associated with the approach would also arise in the climatology distributions to 

which the forecasts were compared.  Upon completion of each forecast or hindcast run, monthly 

total precipitation, evaporation and runoff (surface plus baseflow), and monthly average soil 

moisture and temperature were archived, and the daily streamflow routing was performed for the 

selected subbasins (shown in Figure 2.2).  

2.3.4 Retrospective ENSO-event forecast simulation 

As an additional test of the method, we performed a retrospective comparison of the 10-member 

hindcast ensemble associated with the November 1997 SSTs (just prior to the strong 1997-1998 

El Nino), which was extracted from the 210 member climatology ensemble for November.  The 

purpose of this analysis was to evaluate forecast performance made from a month exhibiting 

strong SST anomalies in the tropical Pacific Ocean -- that is, conditions favorable for skillful 

climate forecasting.  The NINO3 index, which measures the deviation from normal of the sea 

surface temperature in the Eastern Pacific, and which is high during an El Nino event, reached its 
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highest value in decades in winter, 1997.  We treated the 10-member ensemble for 1997 as a 

surrogate for an actual forecast made at that time, even though the SSTs used in the hindcast from 

which it was drawn were prescribed according to observations, rather than projected.  In that 

particular month, however, forecast skill for tropical Pacific SSTs was relatively high, thus the 

prescribed SSTs and forecast SSTs would not have differed as greatly as in other periods.  The 

hydrologic forecast ensemble based on the 10 member El Nino ensemble members was compared 

with ensembles yielded from use of the entire 210 member November hindcast.  

3. RESULTS 

We evaluated the results of the experiment using two types of output:  a) spatially distributed 

variables such as surface forcings, hydrologic model runoff and soil moisture; and b) streamflow 

at selected locations.  These outputs were generated for the six monthly forecast dates beginning 

in April, 2000.  We report here a representative sample of the forecast results for three starting 

dates – April 20, June 20 and August 20 – and observed conditions for May, July and September.  

For spatial forecast results, the forecast ensemble medians are plotted as a percentile of GSM 

climatology ensembles derived from GSM hindcasts.  These percentiles are verified against the 

observation-based, retrospective forecast fields, shown as percentiles of the observation-based, 

retrospective climatology.  For streamflow forecast results, GSM forecast and hindcast 

(climatology) distributions (discussed in Section 2.3.3.) are shown in addition to observations that 

have become available since the forecasts were made.   

3.1 Spatial Analyses 

Figure 2.6 shows observation-based gridded precipitation and temperature fields and 

corresponding simulated soil moisture and runoff.  Data and model deficiencies notwithstanding, 

these are treated as surrogate observations for the summer 2000 period.  The broad features of the 

results for simulated soil moisture and runoff are consistent with the signals in precipitation and 

temperature, modulated by the simulated antecedent soil moisture conditions (characterized by 

general deficits in the southeast throughout the study period).  Soil moisture and runoff 

percentiles were quite similar, which reflects the VIC model tendency for precipitation inputs to 

elevate runoff and baseflow in concert with soil moisture, especially considered from a monthly 
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standpoint.  Against these, we contrast Figures 2.7a-b, which show GSM-based forecasts of the 

same fields. 
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Figure 2.6 Observed climatology for April through September, 2000, defined as the monthly 

gridded observations of total precipitation and average temperature, and 
associated simulated analyses of average soil moisture and total runoff.  These 
are shown as percentiles of the variables' observed and simulated (21 year) 
climatological distributions, respectively. 
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In the observational analyses, extremely low May precipitation coupled with high temperatures 

deepened drought conditions throughout the Ohio River valley and southeast, while the 

northeastern U.S. experienced slightly higher than average precipitation (with respect to the 1979-

99 climatology) (Figure 2.6).  By July, temperatures along the East Coast and the northern Ohio 

River valley were cooler, and precipitation had risen to above normal in many locations, while 

the relative dryness and heat persisted from the Gulf Coast to the southern Ohio River valley.  

September brought high temperatures everywhere except Florida and Georgia, and the region of 

low precipitation shifted north, while the drought eased along the Gulf Coast.  In response to 

these forcings, anomalously low soil moisture and runoff, which had been general over the entire 

domain south of New England, recovered gradually along the East Coast and the northern Ohio 

River valley.  The center of the drought-stricken region, which initially included Florida, shifted 

west toward Alabama and Louisiana. 

The April ensemble forecasts (spanning the period May-October) showed above normal 

precipitation in the southeastern U.S. in May, and on the East Coast (excepting Florida) in July, 

but then slightly below normal precipitation everywhere except Florida, in September (Figure 

2.7a).  The median forecast was for temperatures slightly above normal everywhere except 

Florida in May, then more strongly above normal west of the Atlantic states in July and 

September.  Normal to cool conditions were forecast in the Atlantic states during the study 

period.  Consequently, initially dry soil moisture and below normal runoff were predicted to 

recover (at least in the median forecast) in Florida and the mid-Atlantic states by July, but linger 

in parts of Alabama and Louisiana.  In southern New England and the Ohio River valley, 

however, the median forecast called for a continuation of dryness and heat, hence low soil 

moisture and runoff.  

The June forecasts (Figure 2.7b, top, shows July and September) anticipated, in the median, 

above normal precipitation in the southeastern U.S. in July, and on the East Coast and Ohio River 

valley (except in New England) in September, and cooler temperatures everywhere in both 

months.  Even so, the forecasts indicated that the dry soil moisture and below normal runoff 

would fail to recover fully in the southern and Gulf states, while in southern New England and the 

Ohio River valley, they would to transition to above normal levels.   
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Figure 2.7a April 2000 GSM forecast ensemble medians for May, July and September 
monthly total precipitation and average temperature, and GSM forecast-based 
(VIC simulated) ensemble medians of average soil moisture and total runoff, 
shown as percentiles of the 21-year GSM hindcast climatology distribution for 
each respective variable 
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Figure 2.7b (top) June and (bottom) August 2000 GSM forecast ensemble medians for July 
and September monthly total precipitation and average temperature, and GSM 
forecast-based (VIC simulated) ensemble medians of average soil moisture and 
total runoff, shown as percentiles of the 21-year GSM hindcast climatology 
distribution for each respective variable 
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The median August forecasts (Figure 2.7b, bottom, for September) called for dry and hot 

conditions in Florida, the Gulf states and the Ohio River valley, with above normal precipitation 

and cooler to normal temperatures from the mid-Atlantic states to New England.  These 

circumstances would serve to aggravate the low August soil moisture centered on Alabama. 

3.2 Streamflow Evaluation 

Predicted streamflows reflected the condition of soil moisture and runoff, although the deviation 

from normal was generally small relative to the variability exhibited by both the climatological 

and forecast ensemble distributions.  Figures 2.8 and 2.9 show the location of the streamflow sites 

(upper right) and the forecast to climatology ensemble comparisons for the same three forecast 

start dates detailed in Figure 2.7.   

Figure 2.8, for the Potomac River near Washington, D.C. - Little Falls, shows, for the April 

forecast, forecast streamflow distributions which are similar to the hindcast climatology 

distributions, but a bit lower in May and September, when it can be seen from Figure 2.7a that the 

entire watershed is below normal.  The observed streamflows in May were lower than either 

distribution suggested, but the forecast correctly indicates the direction of the anomaly.  In the 

June and August, the forecasts and climatology distributions had similar medians except for July 

streamflow in the June forecast, when the forecast was erroneously higher, reflecting the above 

normal precipitation forecast.  The forecasts in June and August agreed fairly well with 

observations, which were not far from normal for the June to September period. 
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Figure 2.8 April, June and August 2000 monthly average streamflow forecast and hindcast 

(climatology) ensembles compared with observed values, for the Potomac River 
near Washington, D.C. - Little Falls (location shown in the upper right) 

 

In Figure 2.9, showing the April forecast for the Alabama River at Claiborne L&D, the forecast 

ensemble distributions were slightly lower than the climatology ensembles in the first two months 

of the forecast period, but thereafter were similar.  The forecasts gave a slight indication that 

streamflows would be low early in summer, but no indication of the severity of the streamflow 

anomaly that was observed.  This result was consistent with the above normal simulated 

antecedent soil moisture for April (Figure 2.6) in half of the watershed, and the forecast of above 

normal precipitation in July (Figure 2.7a).  Subsequent forecasts in June and August, however, 

were significantly lower than the climatology ensemble distributions, responding to the dry initial 

conditions for those forecasts (Figure 2.6) and near or below normal precipitation thereafter 
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(Figure 2.7b).  The June and August forecasts distinctly anticipated the severe declines in summer 

streamflow that were observed. 
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Figure 2.9 April, June and August 2000 monthly average streamflow forecast and hindcast 
(climatology) ensembles compared with observed values, for the Alabama River 
at Claiborne L&D, AL (location shown in the upper right) 

 

3.3 1997 El Nino Period Forecast Results 

 

Consistent with the expectation of an anomalously wet winter season in the Southeast associated 

with the El Nino climate phase (Changnon, 1999; Barnston et al., 1999), the gridded observed 

precipitation and temperature and associated hindcast hydrologic simulations of soil moisture and 

runoff for November 1997 (not shown here) showed wetter than normal (again, with respect to 

the 1979-1999 climatological period) precipitation in the southeastern U.S. and the Atlantic 
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drainages, with drier than average conditions in the Ohio River basin -- a pattern echoed in the 

relative soil moistures and runoff.  At the same time, temperatures throughout the study domain 

were relatively and uniformly cool.  In December, the southeastern states were again very wet 

while the rest of the domain received about normal precipitation, and the entire region was still 

relatively cool, but less so than in the previous month.  In January through March, the entire 

domain received above average precipitation, but by April drier weather appeared to move north 

from Florida, eventually extending to the entire southeast.  During this time, with the exception of 

a cool March in the southeast, temperatures were mostly above normal throughout the domain.  

The net result for soil moisture and runoff for fall and winter 1997-98 was wetter than average in 

the southeastern U.S. and along the East Coast, with the largest soil moisture anomaly in the 

southeastern U.S. in December 1997 to March 1998, and in the northeastern U.S. in March and 

April, 1998.   

The spatial (perfect SST) forecasts made in November 1997 appear to indicate correctly the 

direction of soil moisture and runoff anomalies – i.e., the median forecast was for wetter than 

normal conditions.  Exceptions were the northeastern U.S. and the Ohio River basin, where the 

median forecasts were wetter than average as early as December 1997, and drier than average in 

April and May, 1998, whereas the retrospective analysis showed the opposite condition.  Also, 

the forecast percentiles tended toward the median relative to the hindcast percentiles, perhaps as a 

result of the finer resolution afforded the probability scale by the use of 210 ensemble members 

for the climatology compared with the 21 ensemble members used to provide statistical context 

for the forecasts.  A comparison of months 1-3 (December 1997 to February 1998) of the hindcast 

and the forecast is shown in Figure 2.10.  
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Figure 2.10 (a) Dec. 1997 - Feb. 1998 gridded observed monthly total precipitation and 

average temperature, and associated analyses of average soil moisture and total 
runoff, shown as percentiles of the observed climatology; (b) November 1997 
GSM-derived forecasts for the same period, shown as percentiles of the GSM-
based hindcast climatology 

 



 31

A sample of streamflow results for the El Nino period forecast is given in Figure 2.11, for the 

Potomac River near Washington, D.C. - Little Falls.  The Potomac River watershed’s slightly 

below normal precipitation in December and near normal soil moisture (Figure 2.10) led to a 

forecast ensemble with a similar median to the climatology ensemble in December.  Both 

ensembles were slightly higher than the observed streamflow.  The forecasts’ above normal 

precipitation in January and February produced above normal forecast distributions for 

streamflow in those months, although the forecasts, as in the Alabama River example shown in 

Figure 2.9, failed to anticipate the magnitude of the anomaly actually observed, which continued 

throughout the forecast period.  

4. DISCUSSION 

We evaluated the spatial forecasts from a qualitative standpoint only, broadly assessing the 

consistency of anomaly direction in the climate forecasts and resulting hydrology forecasts 

without undertaking to determine the skill of the climate model and resulting hydrologic forecasts 

quantitatively (hence the term “skill” is here used loosely to indicate general consistency of 

forecasts with expected values).  We did not focus on climate model forecast skill because our 

primary purpose was to develop a framework within which ensemble climate forecasts could be 

used for hydrological purposes.  A secondary objective was to determine whether the climate 

model forecast signal or hydrologic (soil moisture) persistence would dominate in situations 

where the climate forecast anomalies were significant.  We conclude from this exercise that the 

downscaling procedure successfully transfers the climate forecast signals to the hydrologic 

variables.  It is especially encouraging that the hydrologic model, which performs a non-linear 

transformation of temperature, precipitation and other inputs to streamflow, was able to retrieve 

the observed streamflow climatology from the downscaled, GSM-scale observed precipitation 

and temperature climatology.   
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Figure 2.11 El Nino condition streamflow forecast for the Potomac River near Washington, 

D.C. - Little Falls, using a 10 member GSM hindcast ensemble for November 
1997 as a forecast surrogate, compared with the GSM hindcast ensembles for 
November 1979-99 (a climatology), and with observed streamflows  

One feature of this approach that may require further evaluation is the spatial interpolation of 

bias-corrected GSM-scale output anomalies, rather than their associated probability values, 

directly to the VIC 1/8 degree resolution grid cell centers.  Interpolation of anomaly quantiles (in 

probability space) to the VIC resolution would yield a joint probability anomaly for the thousands 

of VIC cells in each basin far exceeding the original GSM anomaly quantile, so the latter 

approach was chosen as a method of bridging the scale gap between GSM output and VIC input.  

It also appears that the downscaling procedure may increase the variability of the forecasts 

somewhat by producing high outliers in the precipitation fields (as a result of the rescaling of 

sampled daily patterns to match monthly anomalies), and refinements will be pursued in future 

applications to resolve this problem.   

For the summer 2000 study period and region, the climate model forecasts had a mixed 

performance, as estimated spatially from the precipitation, temperature, runoff and soil moisture 

ensemble medians and from the streamflow comparisons.  For example, in the April and June 

month 1 median forecasts (Figure 2.7), the southeast is slightly wetter than the climatology 

median, while our retrospective analysis shows that the region continued to be dry.  In each case, 
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however, the persistence of antecedent low soil moisture from the hydrology model maintained 

low soil moisture and runoff several months into the forecast period, so that the forecast results 

still agreed reasonably well with the retrospective analysis for lead times of several months.  

Here, the weak and at times incorrect direction of the climate model forecasts was balanced by a 

degree of skill derived from persistence in the hydrologic states.   

For the El Nino-condition forecasts of November 1997 (Figure 2.10), in contrast to the summer 

2000 results, the hydrologic forecast results appeared to be determined by the climate model 

forecast signal as well as by persistence in the antecedent hydrologic model state.  The initial soil 

moisture signature, characterized by a decreasing gradient in soil moisture and runoff percentile 

from south to north (which resulted from the antecedent conditions) was largely erased by the 

normal to wetter than average precipitation forecasts coupled with normal to cooler than average 

temperature forecasts (after the December warmth in the northeast).  By February (forecast month 

3), the wet anomaly over the entire region was consistent with, although weaker than, the 

anomaly revealed in the hindcast analysis.   

One issue that bears mention is the high variance in forecast ensemble and climatology ensemble 

spatial fields (for a given point), hence in the streamflow ensembles (Figures 2.8, 2.9 and 2.11).  

Given a high variance, a large shift in the mean of the forecast distribution is required to produce 

a statistical difference in the forecast outcome, hence the discrimination of the forecast system (in 

the sense described by Wilks, 1995) is weaker than it would be for a narrower distribution of 

ensembles.  A wide forecast distribution prohibits water managers from making decisions that 

effectively rule out one end or the other (or, in some cases, both) of the climatological distribution 

of expected hydrologic conditions for the forecast period.  Future work in refining methods to 

bias-correct and downscale climate forecasts for use in hydrologic prediction must therefore take 

care to minimize the addition of method-related uncertainty.  

Further exploration of the approach should also include a broader range of climate and land 

surface conditions than were here examined.  Where snowpack plays a major role in the seasonal 

cycle, for example, contributions of the hydrologic and climate components of the forecasts are 

expected to be significantly different at different times of the year.  An effort to determine a 

priori where and when long range forecasts are likely to have skill, based purely on land surface 

and climate considerations, would be useful. 
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Our experience in this study suggests that future work to apply the climate-hydrology model 

forecasting approach in real-time and to assess the outputs quantitatively should also concentrate 

on improvements in two areas.  First, the accurate estimation of initial hydrologic conditions for 

the forecasts is critical for capturing the influence of land surface anomalies that persist into the 

forecast period; hence an improvement in real-time access to meteorological data for hydrologic 

simulation of initial conditions would increase the accuracy of the forecasts.  Second, quantitative 

evaluation of the climate forecasts would benefit from the existence of retrospective 

meteorological forecast datasets generated with the identical methods (to the extent possible) used 

in producing the current forecasts, for a climatology period of several decades.  The retrospective 

perfect SST-based surrogate forecast of the type explored here hints only at an upper bound on 

forecast performance, rather than an estimate of performance consistent with the forecasts 

produced in real time.  

Nonetheless, from an end user standpoint, the forecasting approach appears to have potential 

utility for conditioning water resources related outlooks, particularly when there is either a strong 

anomaly signal in the climate forecasts or highly anomalous antecedent conditions in the 

hydrologic model state.  A quantitative exploration into the suitability of the spatial and 

streamflow forecasts for particular water resources applications appears to be warranted.   
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III. HYDROLOGIC IMPLICATIONS OF DYNAMICAL AND 
STATISTICAL APPROACHES TO DOWNSCALING CLIMATE 

MODEL OUTPUTS 

This paper is accepted for publication in the journal Climatic Change in its current form:  Wood, 

A.W., Leung, L. R., V. Sridhar and D.P. Lettenmaier, 2004, Hydrologic implications of 

dynamical and statistical approaches to downscaling climate model outputs. 

1. INTRODUCTION 

Improved understanding of the interactions between ocean, land, and atmosphere has led to 

definitive advances in the ability to forecast weather and climate using complex models of the 

ocean-land-atmosphere system (e.g., Betts et al., 1997; Livezey, et al., 1997; Shukla, 1998; 

Koster et al., 1999).  Despite improved skill in weather and climate forecasts, hydrologists 

struggle with how best to use forecast information in applications such as water resource 

planning, management and conservation as well as irrigation and drainage for sustainable 

development.  The lack of spatial specificity and accuracy has rendered weather and climate 

forecasts inadequate for hydrologic applications that have serious ramifications to stakeholders 

and the society at large (Stern and Easterling, 1999).   

One factor that has limited the use of climate forecast information in hydrological prediction is 

the scale mismatch between climate model output and the spatial scale at which hydrological 

models are applied – typically some subdivision, either natural (subcatchment) or gridding of a 

watershed (e.g., Lettenmaier et al., 1999; Wood et al., 2002; Wilby et al., 2000).  Various studies 

have evaluated downscaling methods designed to bridge this gap, particularly in terms of their 

ability to reproduce surface temperature and precipitation fields (IPCC, 2001; Leung et al., 2003).  

The methods that have been most widely used include dynamical modeling by nesting a regional 

climate model (RCM – see Leung et al., 2004) within a general circulation model (GCM) (Cocke 

and LaRow, 2000; Leung et al., 1999; Giorgi and Mearns, 1991; Kim et al., 2000; Yarnal et al., 

2000), statistical or empirical transfer functions that relate local climate to GCM output  
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(Hewitson and Crane, 1996; Wilby and Wigley, 1997; Wilby et al., 1998) and climate-anolog 

procedures (IPCC, 1996).  Still other methods (e.g., Charles et al., 1999) combine dynamical and 

statistical procedures.  While dynamical and statistical downscaling approaches yield similar 

reproductions of current climate, they can nonetheless differ significantly in their projections of 

future climate conditions.  Studies by Murphy (1999), Kidson and Thompson (1998) and Wilby et 

al. (2000) further suggest the need to bias correct climate model output to assure meaningful 

results in applications like hydrologic and water resources assessments.  

The papers in this special issue report results from the pilot phase of the Department of Energy 

Accelerated Climate Prediction Initiative (ACPI), which used GCM scenarios of future climate 

produced by the DOE-NCAR Parallel Climate Model (PCM; Washington et al., 2000, Dai et al., 

2004).  A variety of methods were used in ACPI projects to downscale PCM output.  Dettinger et 

al. (2004) studied water resources impacts of climate change projected by PCM in several 

subbasins of the Sacramento-San Joaquin River basin after adjustment of historical climate model 

output to match daily observed precipitation and temperature statistics.  Payne et al. (2004) 

utilized variations of the probability mapping methods described by Wood et al. (2002) for spatial 

downscaling and bias correction of both global and regional climate model outputs in their 

investigation of water resources impacts of climate change in the Columbia River Basin (CRB).  

Van Rheenen et al. (2004) and Christensen et al. (2004) used similar approaches in studies of the 

Sacramento-San Joaquin and Colorado River basins, respectively.  Vail and Wigmosta (2004) 

studied the impacts to fisheries in the Yakima River Basin using PCM climate scenarios 

downscaled by the regional climate model (RCM) of Leung et al. (2004) and subsequently bias 

corrected using statistical methods.  All of these studies used different methods to downscale and 

bias correct the global or regional model outputs in order to produce realistic simulations of 

hydrologic conditions of the current climate.  It is worth noting that this is a de facto minimum 

standard of any useful downscaling method for hydrologic applications:  the historic observed 

conditions must be reproducible. 

Few studies have evaluated the differences among various downscaling methods based on their 

implications for hydrological predictions (Crane et al., 2002; Wilby, 2000).  There remain critical 

questions, for instance, about the value of dynamic downscaling, given that biases inevitably 

remain that must be removed, usually by subsequent application of statistical methods.  With 
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these questions in mind, we evaluated six different methods of downscaling from global or 

regional models to the still finer scale of a grid based hydrological model (specifically, the 

Variable Infiltration Capacity, or VIC model).  Included are three statistical downscaling methods 

-- linear interpolation (LI), spatial disaggregation (SD) and bias-corrected spatial disaggregation 

(BCSD) -- applied either directly to PCM outputs or to dynamically downscaled (to intermediate 

resolution) PCM output, i.e., to the output of a regional climate model.  The six methods were 

compared through application to a retrospective climate simulation, and those that performed the 

best were also applied to a future climate scenario.  The spatial domain of all comparisons was 

the Columbia River Basin (CRB) of the U.S. Pacific Northwest (PNW) region (see Payne et al., 

2004 for background). 

2. APPROACH 

The general approach was to simulate land surface energy and water fluxes using the VIC 

macroscale hydrological model (see Section 2.2), driven by meteorological outputs from PCM 

with and without intervening dynamical downscaling using a regional climate model.  Results of 

a twenty-year climate-hydrology scenario were evaluated by comparison with a retrospective 

observational analysis of surface climate and hydrologic conditions.  Implications of the more 

successful of the approaches were also explored for a future climate run.  The observational 

analysis is discussed in Section 2.1, the models and simulations in Section 2.2, and the 

downscaling methods in Section 2.3.  Sampling error issues are discussed in Section 2.4 

2.1 Observational Analysis 

The observed climatological and hydrological fields used to evaluate the downscaled climate 

model outputs were taken or derived from the hydroclimatic retrospective analysis of Maurer et 

al. (2002), which is based on a 1/8 degree hydrologic simulation of land surface energy and water 

variables run at a 3 hour timestep over the continental U.S. for the period 1950-2000.  We used 

average monthly temperature and soil moisture, total monthly precipitation, runoff and 

evaporation, and basin-averaged monthly snow water equivalent.  The climate variables 

(precipitation and temperature) for the 20-year retrospective period (approximately 1976-96) 

were taken directly from the Maurer et al. (2002) dataset, and the hydrologic ones were generated 

via a retrospective simulation of the 20 year period (with a 2-year hydrologic model spin-up, 
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producing an initial model state from which all retrospective runs were started), driven by climate 

variables taken from the same gridded observations.  

2.2 Models and Simulations 

We used output from two climate models:  PCM and the RCM of Leung et al. (2004) for that 

portion of their domains included within the VIC model’s 1/8 degree representation of the PNW.  

The PNW domain is divided by the Cascade Mountain range into coastal basins draining to the 

west, and all of the CRB.  Almost all of the region has a winter-dominant precipitation regime in 

which most of the annual precipitation is derived from frontal systems originating in the North 

Pacific, the majority of the moisture from which falls on the west slopes of the Cascades.  

Although much drier, over the CRB to the east winter precipitation occurs mostly as snow (in the 

mountains of British Columbia, Canada, and Idaho and Montana), much of which contributes to a 

strong seasonal runoff peak in the late spring and early summer.  Figure 3.1 shows the study 

domain, along with the PCM and RCM grid alignments (T42 or 2.8125 degrees latitude/longitude 

for PCM, and ½ degrees latitude/longitude for RCM).  Also shown are the PCM and RCM 

average annual precipitation and temperature climatologies for the period 1975-95, at the 

resolution of each climate model, and the observed 1/8 degree climatology described in section 

2.1.  The figure shows the effect of RCM’s higher spatial resolution relative to PCM (PCM 

represents the PNW region with about 20 grid cells, while RCM uses about 500, and the observed 

1/8 degree climatology has about 6400).  

The climate scenarios and climate model simulations used in the study are described in greater 

detail elsewhere in this issue (Dai, et al., 2004 for PCM and Leung, et al., 2004 for RCM), but in 

brief, they resulted from retrospective historical simulation and future climate simulations, based 

on a observed historical greenhouse gas and aerosol emissions for the historical run, and 

“business as usual” (BAU) global emissions future climate.  Because the RCM simulations were 

of length 20-years (using a subset of longer PCM sequences to represent boundary conditions), all 

analyses were based on the 20-year simulations for both PCM and RCM for the periods 

designated “RCM subset” in Table 3.1 to avoid sample length differences.   
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Figure 3.1 (a) CRB Domain with PCM and RCM model grids and four streamflow 
simulation locations (diamonds: 1-Corra Linn; 2-Chief Joseph; 3-Ice Harbor; and 
4-The Dalles).  (b) CRB annual average 1979-95 model climatologies for total 
precipitation and average temperature at PCM’s T42 and RCM’s ½ degree 
resolutions, compared with the 1/8 degree observed climatology of Maurer et al., 
(2002). 

 

Table 3.1 Simulations used in this study 

Run Description Run Period RCM Subset 

B06.22 Historical (greenhouse CO2+aerosols forcing) 1870-2000 10/1975 - 9/1995 

B06.44 Climate Change (future scenario forcing) 1995-2099 7/2040 – 6/2060 
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The hydrologic model used in this study, the Variable Infiltration Capacity (VIC) model of Liang 

et al., (1994; 1996; 1999) is a semi-distributed grid-based hydrological model which 

parameterizes the dominant hydrometeorological processes taking place at the land surface-

atmosphere interface.  The VIC model has been implemented previously for the CRB, and the 

calibration procedure and results are described in Nijssen et al. (1997) and Payne et al. (2004).  

VIC model climate inputs for this study were daily precipitation, maximum and minimum 

temperature, and daily average wind speed, for each 1/8 degree model grid cell (other forcing 

variables – specifically downward solar and longwave radiation, and dew point – were derived 

using methods described by Maurer et al., 2002).  Because VIC was run at a finer spatial 

resolution than the climate models, a downscaling step (methods described in the next section) to 

bridge the resolution gap between climate model and VIC was implemented, whether PCM or 

RCM output was used.  The VIC model was applied to the entire PNW study domain of Figure 

3.1, although the hydrologic analysis was confined to the CRB drainage upstream of The Dalles, 

OR, a domain identical to that used by Payne et al. (2004).  The primary difference between the 

VIC model used for this study and the Payne et al. (2004) implementation was grid resolution:  

we used 1/8 degrees longitude and latitude rather than 1/4 degrees to afford a greater resolution 

gap for the downscaling method evaluation.  Streamflow results are reported for four locations 

shown in Figure 3.1:  Kootenai River at Corra Linn Dam, Columbia River at Chief Joseph Dam, 

Snake River at Ice Harbor Dam, and the Columbia River at The Dalles, OR.  These reflect, 

roughly, streamflow effects in the Canadian portion of the basin, the middle and upper Columbia 

River, the Snake River drainage, and the entire basin.  Figure 3.2 shows simulated streamflow at 

these locations when VIC was driven by observed precipitation and temperature.  The simulations 

generally reproduce the observed long term monthly mean hydrograph and also capture 

interannual flow variation. 

2.3 Downscaling Methods 

For each of the climate model runs summarized in Table 3.1, we compared six approaches for 

downscaling climate model output:  three model output post-processing approaches – linear 

interpolation (LI), spatial disaggregation (SD) and bias-corrected spatial disaggregation (BCSD) -

- each applied to PCM output directly and to RCM output, which represents an intermediate 

dynamical downscaling step.  To distinguish between three direct PCM output methods and the 
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three RCM output methods, a prefix of PCM- or RCM- is used with the post-processing method 

designator.  Regardless of the method, the climate model output fields that were downscaled were 

the same:  monthly mean temperature (Tavg) and total precipitation (Ptot), at the climate model 

resolution.  Each downscaling procedure reproduced these as input fields for the VIC model at 

1/8 degree resolution, and an additional step was taken to disaggregate the monthly fields into 

daily time series required by VIC (daily precipitation, maximum and minimum temperature, and 

daily average wind speed).  This final disaggregation step is identical to that used in Wood et al. 

(2002), and is summarized briefly in Section 2.3.1 below.  Sections 2.3.2 and 2.3.3 summarize the 

LI and SD approaches, primarily focusing on their differences from BCSD. 

2.3.1 Bias correction of climate model output, followed by spatial disaggregation (BCSD) 

For direct use of PCM output, Tavg and Ptot forcings from each climate model cell centered within 

the study region were treated individually for purposes of bias correction.  For bias removal, a 

quantile-based mapping (e.g., the empirical transformation of Panofsky and Brier, 1968) was 

constructed from the PCM model climatology to the observed monthly climatology for each 

variable (Tavg and Ptot).  The observed climatology was derived from Maurer et al. (2002) for the 

period 1975-95, re-gridded and averaged to the PCM grid resolution.  The PCM climatology was 

taken from modeled Tavg and Ptot from the B06.22 simulation for the same period.  The mapping 

from PCM to observed climatology was subsequently applied to the PCM raw output, translating 

it to a plausible range with respect to historical observations.  The mapping was performed at the 

resolution of the PCM output, hence the adjustments vary spatially at the PCM grid scale and by 

month.  For the BAU scenarios, the PCM cell-specific temperature shift (monthly averages 

relative to the B06.22 retrospective run monthly averages) were removed from the uncorrected 

PCM output before, and replaced after, the bias-correction step.  For the BAU runs, this step was 

needed because the BAU temperature distribution was quite different from that of the climate 

model historic run.  When the temperature shift was removed, the spread of the BAU run 

temperature distribution was near the historical range, enabling the bias-correction step to be 

applied with little extrapolation.  The basic assumption of this approach is that the variability of 

the BAU run temperature distributions will remain similar to the retrospective run variability, 

despite the BAU mean shift. 
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CRB Flow validation at 4 Locations
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Figure 3.2 VIC model validation results for four streamflow routing locations (solid line is 
observations; dashed line is simulation).  A subset timeseries from the validation 
period is shown at left, the monthly mean hydrographs at right. 
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Spatial disaggregation imposed sub-PCM grid scale spatial variability on the bias-corrected, 

PCM-scale forcings.  The monthly time step, bias-corrected PCM-scale BAU scenario time series 

were spatially interpolated to the hydrology model grid cell centers.  Anomaly fields 

(multiplicative for precipitation, and additive for temperature, different for each calendar month), 

developed from the observed climatological monthly means (for Tavg and Ptot) were applied to the 

resulting 1/8 degree monthly variable fields as follows:  (a) observed monthly mean Tavg and Ptot 

1975-95 averages were aggregated to the climate model scale (T42 or ½ degree), and then 

interpolated back to the 1/8 degree scale, exactly as the climate model scale forcings were 

interpolated; (b) the differences (for temperature) or ratios (for precipitation) between the 1/8 

degree monthly mean Tavg and Ptot and the interpolated monthly mean fields were calculated to 

create the anomaly fields.  The mean monthly sets of anomaly fields so constructed, when applied 

to timeseries of interpolated climate model-derived fields, added spatial variability to the smooth 

1/8 degree field created by the interpolation step.  The spatial disaggregation created VIC scale 

monthly forcing time series corresponding to the PCM scale time series, but reflecting VIC-scale 

spatial structure.  

Finally, a temporal disaggregation step was used to form daily time step inputs for the VIC 

model.  The monthly forcing time series were replicated using scaled or shifted daily patterns 

sampled from the historic record, at the hydrology model resolution.  Month-long daily patterns 

of precipitation and temperature (more specifically Tmin and Tmax, with Tavg defined subsequently 

as their average) were sampled for each monthly timeseries by picking a year from the 50-year 

climatology period at random.  Each sampling year was used for the entire CRB domain to 

preserve a degree of synchronization in the weather components driving hydrologic response.  

The daily patterns were then scaled (for precipitation) and shifted (for temperature) to match the 

monthly timeseries (in Tavg and Ptot) created by applying the interpolated, bias-corrected PCM 

anomalies to the VIC cell climatological means.  Various screening methods were applied to the 

precipitation patterns to ensure that rescaling did not result in unrealistic values.  The same 

temporal disaggregation step was applied in all six methods, to avoid confounding the results by 

differences in the derivation of daily weather patterns.  The rationale for use of monthly rather 

than daily or sub-daily climate model outputs is discussed in Wood et al. (2002).  
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Application of the BCSD method to RCM output was as described above, with the following 

differences: 

• Instead of PCM output for Tavg and Ptot, RCM’s dynamically downscaled monthly Tavg 

and Ptot at ½ degree were used.  A ½ degree observed climatology was developed for 

bias-correction by aggregation from the Maurer et al. (2002) archive.  

• The spatial disaggregation began with bias-corrected ½ degree monthly fields rather than 

the 2.8 degree (PCM resolution) fields.  

Note that RCM is driven with a more comprehensive set of PCM output fields than the limited 

surface variables used in our hydrologic downscaling (see Leung et al., 2004 for details).  

2.3.2 Spatial disaggregation of climate model output, without bias correction (SD) 

The SD approach was similar to the BCSD method, except that the PCM or RCM output fields 

were interpolated to the 1/8-degree VIC model grid without the intervening bias-correction step. 

2.3.3 Spatial linear interpolation of climate model output (LI) 

The LI procedure was similar to BCSD, except that the PCM output fields or RCM output fields 

were linearly interpolated to the hydrologic model grid cells without the intervening bias-

correction step, and without spatial disaggregation.  The LI approach is intended to provide a 

baseline for comparison with the other methods because it adds the least additional information to 

the raw output of the climate model.  More elaborate interpolation approaches exist that draw 

from ancillary information sources (e.g., using elevation data to estimate precipitation gradients 

across an interpolation space, as in Hutchinson, 1995), to yield more intelligent distribution of the 

interpolated data.  These methods arguably fall closer to the category of spatial disaggregation 

(SD), and are not considered in this paper, given our inclusion of a separate SD method. 

2.4 Method Discussion 

The success of two of the techniques – BC and SD – depends on the stability over time of the 

probability distributions used to correct climate model bias and to impose spatial variability, 

respectively.  In the retrospective assessment, the probability distributions were estimated from 
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the same simulation period that was being downscaled.  Hence the distributions at first glance 

appear to yield unbiased results after downscaling – although it should be understood that even in 

this case, the historic period provides only an estimate to the underlying statistical populations of 

the variables being downscaled, and there is bias associated with the short record length from 

which the probability distributions were estimated.  Had the corrections been applied to another 

retrospective period, the effect of bias resulting from the relatively short record length used to 

estimate the probability distributions would have been more apparent  If the timeseries of the 

variables in question are stationary and the variance is relatively small, this should be a somewhat 

minor issue, as small samples (e.g., N=20, as in this paper) will not produce large sampling 

biases, at least in the estimation of the means of derived hydrologic variables.  On the other hand, 

for variables with larger bias, and/or estimation of variables near the tails of the probability 

distributions, the problem is potentially important – notwithstanding that it can be alleviated by 

use of a longer period of coincident historical observations and climate simulation. 

As noted in Section 2.3.1, for the BAU climate downscaling, the sampling bias issue is 

compounded by the need to estimate unbiased probability distributions of future climate with 

which to adjust the climate model biases.  We recognized through exploratory data analysis that 

the PCM precipitation distribution changes are small enough that the retrospective period can be 

used to estimate these distributions, but the shift in the climate model temperature distributions 

cannot be ignored.  Our approach to minimizing bias in future temperature distributions and the 

required assumptions is described in section 2.3.1.   

A thorough investigation of the sampling bias issues associated with estimation of probability 

distributions from short record lengths is beyond the scope of this paper.  Instead, we report here 

a brief investigation of the implications.  The goal is to estimate the extent to which biases in 

results could arise from errors in estimating probability distributions of the underlying variables.  

The discussion applies to the means of derived variables, and to the BC method only.  

Using a Monte Carlo framework, 500 pairs of samples of 20 years of monthly Ptot and Tavg (each 

year drawn randomly with replacement) were taken from the observed 1951-99 PCM-scale record 

over the CRB domain, and from the spatial means, monthly probability distributions of sampling 

errors were estimated.  These are shown in Figure 3.3 (panels a and b) by the 95 percent 

confidence limits, together with the mean of the 49-year period.  For precipitation, the largest 
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errors are roughly 20-25 percent in winter and spring, while the largest temperature errors are 1-2 

degrees in winter, and 0.9 degrees in spring.  It should be noted that winter and spring 

precipitation and temperature are the dominant meteorological variables affecting streamflow.   

In this limited investigation, it was not feasible to carry this analysis through the hydrologic 

simulation.  Instead, we estimated the effects of the precipitation and temperature errors on mean 

monthly basin-averaged runoff using 2000 randomly drawn non-consecutive 20-year samples 

from the simulated runoff associated with the full 49-year period.  Figure 3.3 (c) shows the 

variation in May-August runoff as a function of December-March precipitation and temperature.  

While the May-August runoff is relatively insensitive to temperature variations, absolute changes 

(in mm) were approximately half the absolute winter precipitation changes (in mm).  Figure 3.3 

(d) shows the variation in the runoff fraction May/June as a function of April-June precipitation 

and temperature.  The runoff fraction ranges from approximately 0.85, for the retrospective 

climate, to approximately 1.15 for a shift in peak flow commonly associated with moderate 

climate warming in this region.  The implications of precipitation and temperature sampling error 

for runoff, at the extremes, are that a 1-degree Celsius warm bias in spring temperature, about the 

same magnitude as the 0.975 non-exceedence sampling error, is sufficient to produce the entire 

shift, and a winter precipitation negative bias could produce a 20 percent summer runoff 

reduction.  On the other hand, as the results in Section 3 show, these runoff biases are minor 

relative to the distortions arising from a failure to bias correct climate model output, even using a 

short correction period. 

These results are not comprehensive, but illustrate that the 20 year scenario lengths used here are 

on the shorter end of the size needed to produce robust correction distributions for application to 

different scenario periods.  Again, the magnitude of these errors can be reduced by increasing the 

length of the retrospective period, although it should be noted that the rate of error reduction is 

expected to go roughly as the ½ power of the record length, so even using the entire 49-year 

period of historic observations (and assuming RCM runs of this length were made) would only 

reduce the errors by a factor of about 1.6. 
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Sampling error in CRB observed P, T
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Figure 3.3 Sampling error 95 percent confidence limits for monthly precipitation (a) and 
temperature (b); c) dependence of May-August runoff (Q) on December – March 
precipitation and temperature; and d) dependence of ratio of May runoff to June 
Runoff on April-June precipitation and temperature.  
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3. RESULTS  

The results for the three different downscaling approaches tested in this study are organized in the 

following way.  Results are presented first for the retrospective climate simulation, followed by 

the future climate simulation, and each is compared to the observational analysis described in 

Section 2.1.  Results include (a) temporally averaged spatial climate fields (monthly total 

precipitation and monthly average air temperature) for December and July (which reflect winter 

and summer conditions); (b) associated spatially averaged variables (monthly precipitation, 

temperature, evapotranspiration, snow water equivalent, runoff and soil moisture); and (c) 

monthly average streamflow (runoff routed through a stream network) at four locations in the 

CRB shown in Figure 3.1. 

3.1 Retrospective Analysis (October 1975 – September 1995) 

3.1.1 Spatial analyses of precipitation, temperature and snow water equivalent 

For December and July, average monthly total precipitation and averaged temperature (Figures 

3.4 and 3.5) were compared with the PCM and RCM-derived retrospective simulation (B06.22) 

results.  The main features of the observed climatology for precipitation (top row, Figure 3.4) are 

a spatial divide between higher precipitation to the west of the Cascade Mountains (which run 

north-south at about longitude 121-122W – see Figure 3.1) and lower precipitation to the east, 

and a temporal divide between high and low precipitation in winter (December) and summer 

(July), respectively.  A second order feature is associated with the higher precipitation areas in 

Canada, Idaho and Montana, which correspond primarily to higher elevations.  The LI results 

show that PCM simulates the west-east gradient toward lower precipitation in the December, and 

somewhat reproduces a spatially smoothed version of observed precipitation with the reverse in 

the July, but not surprisingly fails to capture any elevation-dependent features (hence at the local 

scale is biased almost everywhere, even though the basin average has only moderate bias).  The 

RCM better resolves these spatial features, but shows a wet tendency in December (except in 

coastal areas and British Columbia, where it is too dry), and a dry tendency in July.  Spatial 

disaggregation (SD) alone leads to better representation of precipitation for PCM, greatly 

reducing the December local precipitation biases and nearing RCM’s performance with LI.  

Because of RCM’s better resolution, RCM-SD closely resembles RCM-LI, although SD appears  
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Retrospective (B06.22) Average Precipitation (1975-1995)

December July
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Figure 3.4 December and July total precipitation for the PCM and RCM-driven 

retrospective simulations (1975-95), and for each downscaling method, as 
compared with the observed climatology (top row) for the same period.  LI 
method values are shown in the second row, below which are differences from 
observed values for the LI, SD and BCSD methods. 
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to exacerbate RCM-LI local biases in some areas while improving them in others.  BCSD reduces 

differences between observed and simulated monthly average precipitation in both December and 

July to within 1-2 percent of observed. 

The main feature of the observed climatology for temperature (top row, Figure 3.5) is a cooling 

gradient, present both in winter (December) and summer (July), from southwest to northeast, 

which is moderated primarily by elevation, and secondarily by humidity effects associated with 

lower precipitation east of the Cascades Mountains (which, along with the Snake River plain in 

the southeast, is clearly identifiable in the observed climatology).  The interpolated PCM-LI and 

RCM-LI results both capture the primary gradient, but RCM is clearly superior in resolving the 

temperature range and spatial distribution across the basin.  Both models show cold and warm 

biases in the lower and higher elevation areas, respectively, but these are much stronger in PCM, 

particularly in December.  For PCM, the SD method alone removes much of the spatial elevation 

related bias for July and December, leaving broad scale biases of a few degrees or less.  (It should 

be noted, however, that this apparent agreement is somewhat deceptive, as the hydrological 

model is quite sensitive even to temperature biases of this magnitude).  For RCM, SD may also 

smooth biases arising from the finer resolution of the observed climatology, but RCM’s initial 

biases, for the most part, remain.  BCSD improves the results to the point that the PCM and RCM 

monthly average temperature simulations match the observed means to within a few tenths of a 

degree in December, and a few hundredths of a degree in July.   

For the CRB domain (upstream of The Dalles, OR, bordered to the west by the Cascade 

Mountains rather than the Pacific Ocean), the simulated average April 1 snow water equivalent 

(SWE), which reflects the effects of winter and spring temperature and precipitation, is shown in 

Figure 3.6.  PCM-LI completely fails to capture both the magnitude and spatial distribution of 

SWE, and although interpolated RCM distributes snow correctly, it has a high bias, particularly in 

the Snake River plain, western Montana and eastern Oregon.  With SD, PCM derived results 

improve greatly, despite leaving a high bias in eastern Oregon and central Idaho and a low bias in 

BC.  For RCM, SD makes little difference.  For both PCM and RCM, the BCSD method 

eliminates most of the bias inherent in using both RCM and PCM outputs directly, although some 

small differences between the two are evident, and some very localized biases remain (such as in 

the northern part of the study domain).  
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Retrospective (B06.22) Average Temperature (1975-1995)

December July
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Figure 3.5 December and July average temperature for the PCM and RCM-driven 

retrospective simulations (1975-95), and for each downscaling method, as 
compared with the observed climatology (top row) for the same period.  LI 
method values are shown in the second row, below which are differences from 
observed values for the LI, SD and BCSD methods 
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Retrospective (B0622) April 1 SWE (1975-95)
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Figure 3.6 Average April 1 SWE simulation for the retrospective 1975-95 climate 
simulations, compared with the observed (simulated by the VIC model forced 
with observations) climatology for the same period (top left).  LI method values 
are shown to the right of the observed values; rows 2-4 contain differences from 
observed values for the LI, SD and BCSD methods. 
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3.1.2 Basin-average monthly analysis 

The basin average monthly analysis (Figure 3.7) shows that the LI and SD methods produce 

nearly the same basin-wide precipitation and temperature signal for each model.  In dynamical 

downscaling, however, there are no physically-based mechanisms that constrain the simulation to 

preserve PCM’s basin mean precipitation or temperature.  In this example, while the RCM 

changes the PCM temperature signal only slightly (leaving a cold winter and spring bias), it 

worsens the bias in the seasonality of precipitation, particularly the high bias in fall and winter.  

For RCM, with the LI and SD methods, the high bias in fall and winter precipitation leads to an 

oversimulation of SWE, soil moisture and summer evaporation.  For PCM, the results are varied, 

with SWE and runoff undersimulated for the LI method and oversimulated for the SD method, 

but soil moisture and summer evaporation are oversimulated for both.  SD has little effect on the 

interpolated results for RCM, but as before, greatly changes the interpolated results for PCM.  

The BCSD method, by definition, forces the mean and variance of the PCM and RCM output to 

equal the observed distribution, so for precipitation and temperature, the PCM and RCM BCSD 

results cannot be discriminated (in top row panels of Figure 3.7) from the observed climatology.  

For hydrologic variables, however, the exacting monthly corrections of precipitation and 

temperature alone do not eliminate all biases relative to the observed hydroclimatology.  Note 

that PCM and RCM BCSD runoff shifts slightly earlier in the year, SWE is reduced, and soil 

moisture is slightly out of phase as compared with values simulated directly using VIC forced 

with gridded observations.   
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Observed, PCM and RCM basin-averaged hydrology
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Figure 3.7 Columbia River basin averages of climate and hydrology variables for the 
retrospective 1975-95 climate simulations, compared with the observed 
climatology (i.e., observed precipitation and temperature, and simulated 
hydrologic variables based on these observations) for the same period (note that 
the PCM and RCM BCSD methods produce monthly mean precipitation and 
temperature that are indistinguishable in the figure). 
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3.1.3 Monthly average streamflow 

The plots of monthly average streamflow in Figure 3.8 show the implications of the downscaling 

methods for different parts of the basin.  At The Dalles, RCM’s high precipitation bias leads to 

oversimulation of runoff for both the SD and LI methods; whereas for PCM, the LI results are 

reasonably close to observed, while the SD method over-simulates runoff.  The same is true for 

PCM at Ice Harbor, while at Corra Linn and Chief Joseph, SD greatly improves runoff 

simulation.  For RCM, the SD and LI methods yield similar streamflows, and these are much 

improved relative to PCM streamflows at Corra Linn and Chief Joseph, but are worse (due to 

oversimulation) at Ice Harbor.  The SD step in all cases reduces the difference between 

interpolated PCM streamflow and RCM-LI streamflow.  This reflects the fact that RCM inherited 

large scale bias from PCM and therefore streamflows simulated using the RCM-LI outputs are 

similar to those simulated by PCM-SD.  The BCSD method greatly improves streamflow 

simulation relative to the other methods for both PCM and RCM, at all four sites, although the 

small bias toward earlier runoff remains.  The PCM and RCM BCSD results are essentially 

identical, more or less by construct.  

3.2 BAU Analysis (July 2040 – June 2060) 

3.2.1 Spatial analyses of precipitation, temperature and snow water equivalent 

Because of the large biases resulting from the LI and SD methods for the retrospective climate 

period, results for BCSD only are discussed for the BAU climate.   LI spatial plots are shown, 

however, to help illustrate the differences between the BAU and retrospective scenarios. 

For the BAU simulations, after BCSD, the primary changes in precipitation (top row, Figure 3.9), 

as compared with the observed climatology and with the retrospective climate simulation results 

(second row, Figure 3.4), are an intensification of precipitation in the northwest and northeast 

parts of the domain, a drying in the southeast in December, and a moderate drying over most of 

the region in July.  The BCSD results for both models are quite similar, but RCM simulates 

greater precipitation in some areas in December (particularly west of the Cascade Mountains and 

in the mountains of Idaho) and less precipitation in the eastern part of the basin in July. 
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Retrospective (B06.22) Streamflow Averages:  4 CRB Locations
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Figure 3.8 Streamflow at four locations (see Figure 3.1) for the retrospective 1975-95 

climate simulations, compared with the observed (simulated by the VIC model 
driven with observations) climatology for the same period. 
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BAU B06.44 Average Precipitation (2040-2060)
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Figure 3.9 December and July total precipitation for the PCM and RCM-driven BAU future 
climate simulations (2040-60).  (top row) With LI only; (second row) differences 
in BAU BCSD results for PCM and RCM from their retrospective BCSD results; 
(third row) differences between RCM-BCSD and PCM-BCSD results.  

 

For temperature (Figure 3.10), the BAU simulations from PCM and RCM preserved the spatial 

patterns as each model’s retrospective simulation (Figure 3.5), but were uniformly about 3 and 

1.8 degrees Celsius warmer in winter and July, respectively, a difference that PCM-BCSD and 
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RCM-BCSD simulated almost identically.  The two approaches nonetheless lead to differences of 

up to ½ degree Celsius in places. 

For precipitation and temperature, the RCM-PCM differences with BCSD appear in most cases to 

be reasonably consistent with tendencies present in the retrospective simulations before any 

adjustment (e.g., comparing RCM-PCM differences in the LI rows of Figures 3.4 and 3.5).  For 

example, the RCM’s BAU climate is wetter than PCM’s to the west of the Cascade Mountains, 

where it is also wetter in the retrospective LI approach.  The Snake River basin RCM BAU 

climate is warmer than PCM in July, while in the retrospective simulations, that area is both 

warmer and drier before bias correction.  In winter, the reverse is true (as it is for the eastern rim 

of the domain).  These differences are consistent with the RCM’s colder, wetter bias in those 

areas in the retrospective simulations.  Although these differences are damped out in the 

retrospective BCSD, they filter through BCSD in the BAU simulations. 

For the BAU climate April 1 SWE (Figure 3.11), the BCSD method with RCM and PCM yielded 

significantly less snow for each model, relative to their retrospective SWE results.  RCM had less 

SWE relative to PCM except in the northern tip of the basin, where the RCM BAU was both 

colder and wetter than the PCM BAU in December.  

3.2.2 Monthly basin average and streamflow analyses 

In the monthly analysis of basin average variables (Figure 3.12), the BAU RCM and PCM with 

BCSD approaches both had increased spring and decreased summer precipitation, although PCM 

precipitation was greater than RCM, except in fall.  BAU temperature increases were nearly 

identical for the two approaches, hence different hydrologic results for the basin-averages 

variables followed more for precipitation differences.  Soil moisture and evaporation were higher 

in PCM-BCSD, moderating the effect of PCM’s higher precipitation on runoff, which was only 

slightly higher for PCM than RCM.  For both approaches, the peak runoff came about one month 

earlier, but for RCM-BCSD, volume also decreased.  Basin-average BAU SWE declined relative 

to retrospective SWE, but without much difference between approaches (despite the spatial 

differences in Figure 3.11).   
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Figure 3.10 December and July average temperature for the PCM and RCM-driven BAU 

future climate simulations (2040-60).  (top row) With LI only; (second row) 
differences in BAU BCSD results for PCM and RCM from their retrospective 
BCSD results; (third row) differences between RCM-BCSD and PCM-BCSD 
results. 
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Figure 3.11 Average April 1 SWE simulation for the PCM and RCM-driven BAU future 
climate simulations (2040-60).  (top row) LI method results; (second row, left) 
PCM and RCM BCSD differences between BAU and retrospective results; 
(second row, right) differences between RCM-BCSD and PCM-BCSD results. 

 

Relative to the retrospective results, the BAU streamflow (Figure 3.13) shows an even larger 

seasonality shift toward higher winter-spring flows, and lower summer ones, from the observed 

climatology.  Although equally shifted, the RCM BCSD streamflows are more sensitive to 

climate warming (with decreases in volume in addition to the shift) than the PCM-BCSD flows.  

This effect is exaggerated at Ice Harbor (near the mouth of the Snake River), where flow does not 

benefit from the RCM-BCSD climate’s relatively higher April 1 snowpack in the Canadian 

headwaters of the CRB. 
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Observed and PCM and RCM basin-averaged BAU hydrology
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Figure 3.12 Columbia River basin averages of climate and hydrology variables for the PCM 

and RCM-driven BAU future (2040-60) climate simulations, compared with the 
observed 1975-95 climatology (i.e., observed precipitation and temperature, and 
simulated hydrologic variables based on these observations). 
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BAU (B06.44) Streamflow Averages:  4 CRB Locations
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Figure 3.13 Streamflow at four locations (see Figure 3.1) for the PCM and RCM-driven BAU 
future (2040-60) climate simulations, compared with the observed 1975-95 
climatology (simulated by the VIC model driven with observations). 

 

4. CONCLUSIONS 

The foregoing results of spatial analyses for December and July, and monthly analyses of basin 

averaged climate and hydrology variables and streamflow were chosen to characterize spatial and 

temporal differences arising from six different approaches to downscaling climate model output.  

We recognize that there are some difficulties in diagnosing hydrologic effects from one-month 

“summer” and “winter” snapshots of climate variables, even coupled with the continuous 
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monthly analyses of basin averaged variables.  Nonetheless, we draw the following conclusions 

from the retrospective analysis:   

With BCSD (in contrast to the two other post-processing choices), prior dynamical downscaling 

does not lead to large differences in the resulting hydrologic simulations.   

• Linear interpolation of PCM or RCM output was insufficient to support plausible 

hydrologic simulations, even over large areas, despite the fact that RCM moderated 

PCM-derived hydrologic biases relative to the 1/8 degree observed climatology. 

• If large-scale climate model outputs are relatively unbiased, applying spatial 

disaggregation (SD) to impose subgrid spatial variability improves hydrologic 

simulations, but substantial local biases will remain.  After SD, for example, hydrologic 

(e.g., SWE and runoff) and streamflow simulations derived from the PCM output 

produced similar results to the finer scale RCM outputs after LI.  Simply stated, correctly 

simulating basin mean precipitation and temperature is not sufficient to produce realistic 

hydrologic simulations in river basins of the western U.S.  Conversely, correctly 

simulating the spatial distribution is also insufficient unless biases in the basin mean are 

removed first. 

• If the climate fields are biased, SD alone may exacerbate biases locally (while leaving the 

basin average bias unchanged), particularly for precipitation.  The result is that the 

downscaled climate variables may be unsuitable for use in hydrologic simulation.   

Hydrologic simulation is sufficiently sensitive to biases in the basin mean and spatial distribution 

of precipitation and temperature at the monthly level, that nearly all local bias must be removed 

from climate inputs to achieve plausible hydrologic simulations.  This is particularly true where 

seasonal snowpack transfers moisture input to the soil column and runoff from one season to the 

next.  A primary conclusion of the retrospective study is that, although the BCSD method is 

successful in reproducing observed hydrology using biased climate model simulation outputs 

from both PCM and RCM, the monthly temporal scale used in correction of climate model 

precipitation and temperature, separately, fails to rectify more subtle differences between climate 

model simulation and observed climate.  Interdependencies between precipitation and 
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temperature (for example, the frequency of wet-warm and wet-cold winters) are not addressed by 

the BCSD method, nor are the characteristics of seasonal distributions of precipitation and 

temperature arising from temporal autocorrelation in climate variables.  Although the RCM may 

augment PCM in simulating these dynamics, after the BCSD method, the RCM and PCM 

retrospective hydrology simulations (with residual biases) were nonetheless nearly identical. 

Like seasonal climate variability, interannual climate variability is only represented by the 

downscaling methods described in this paper via those characteristics that are directly transmitted 

to the downscaled values.  For instance, while the methods ensure that the long term model-based 

monthly climatology (and to a large extent) the hydrology will resemble the observed 

hydroclimatology, it does not guarantee that the interseasonal or interannual sequencing of 

different climate regimes (e.g., wet/dry periods such as the 1988 drought or 1993 midwestern 

U.S. flooding) in a retrospective climate model simulation will be accurately simulated.  In fact, 

extratropical interannual climate variability, particularly for precipitation, is not predicted well by 

GCMs (Lau et al., 1996), even given observed ocean boundary forcings, far less in free-running 

climate integrations that form the basis for many climate change studies.  Given retrospective 

boundary conditions, however, many climate models (PCM included, as noted in Zhu et al., 

2003) simulate long-term average annual and seasonal climate characteristics (for means and 

other statistics) reasonably well, which is the rationale for using these models in climate impact 

assessments.  Approaches that combine climate model estimates of changes in characteristics 

which climate models simulate well with observation-derived information about poorly simulated 

climate characteristics (e.g., interannual variability, subgrid spatial variability) may be a fruitful 

area for future investigations. 

When applied to the future (BAU) climate scenarios, the BCSD method yielded the only 

consistently plausible streamflow simulations, whether or not dynamical downscaling was also 

used.  A significant conclusion, however, is that dynamical downscaling of the climate model 

scenarios before applying the BCSD method yielded results showing greater hydrologic 

sensitivity to climate change in the CRB than PCM-BCSD without dynamical downscaling.  The 

RCM’s initial biases in the spatial simulation of temperature and precipitation that were removed 

for the retrospective scenarios appeared to provide tendencies that produced the model 

differences for the BAU climate.  Charles et al. (1999) note that for climate change assessments, 
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the inclusion in statistical downscaling approaches of an atmospheric moisture prediction variable 

(in this case, one other than surface precipitation -- perhaps one more confidently simulated by 

climate models) can lead to convergence in the results of statistical and dynamical approaches. 

The greater hydrologic sensitivity found using RCM-BCSD compared to PCM-BCSD may imply 

that the RCM has a role to play in climate change analysis.  The hydrologic differences are the 

combined result of differences between the PCM and RCM simulated warming signals, and 

differences in their precipitation characteristics.  Leung et al. (2004) showed larger warming in 

the BAU scenario at the higher elevations that may be associated with snow-albedo feedback 

effects (a dependence also found in observations by Beniston et al., 1997, and other regional 

climate simulations, including those of Giorgi et al., 1997; Leung and Ghan, 1999; and Kim, 

2001).  These effects can only be simulated using a fully coupled land-atmosphere model:  one 

way coupling of large scale climate models with high resolution hydrologic models cannot 

recover the effects of the missing regional scale climate change signatures.  Where such regional 

signatures can be shown to be important (and can be accurately represented) in a subgrid scheme, 

they argue for higher resolution modeling or subgrid treatments in fully coupled land-atmosphere 

models for the study of climate change effects. 
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IV. WESTERN U.S. HYDROLOGIC FORECAST APPLICATION 
AND RETROSPECTIVE SKILL ASSESSMENT 

This chapter has been submitted to the Journal of Climate (as Wood, A.W., A. Kumar and D.P. 

Lettenmaier, 2004:  A retrospective assessment of NCEP GSM-based ensemble hydrologic 

forecasting in the western U.S.) in the form reproduced below. 

1. INTRODUCTION 

Managed water resources systems are designed to protect water supply and other water use 

objectives from the vagaries of hydrologic extremes, namely flooding and drought.  Although 

constructed storage and diversification of supply sources (e.g., surface water and groundwater, 

linked from various locations) are the primary means for providing reliable water supplies, water 

managers increasingly are finding that traditional approaches to meeting reliability targets via 

construction of storage are so costly that more advanced means of managing water resources must 

be considered as well.  Primary among these are more accurate prediction of supply and demand 

over a range of lead times.  Perhaps the most basic supply (i.e., streamflow) prediction is the 

forecast of historically observed streamflow averages (the deterministic “climatology forecast”).  

Greater forecast skill, however, has long been provided by methods ranging from simple 

regression or index methods (occasionally in graphical form, as demonstrated in Hall and 

Martinec, 1985), relating, for instance, early spring snow depth and/or streamflow with summer 

streamflow volumes (e.g., Huber and Robertson, 1982; Lettenmaier and Garen, 1979) to elaborate 

mathematical and statistical time series modeling approaches (Box and Jenkins, 1976).  The early 

1970s saw the introduction of deterministic, conceptual computerized hydrologic models (see 

Linsley et al., 1975, for an overview), which led to the development of streamflow forecasting 

models currently run by the National Weather Service (NWS) in a probabilistic framework called 

Extended (or more recently, “Ensemble”) Streamflow Prediction (ESP: Twedt et al., 1977; Day, 

1985).   
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In the last several decades, advances in understanding of systematic land-atmosphere-ocean 

interactions have helped provide the basis for seasonal prediction of precipitation and 

temperature, two key drivers of land surface hydrology, at seasonal lead times (Goddard et al., 

2001 provides a comprehensive review).  The important role of the thermal inertia of the world’s 

oceans in determining continental climate, primarily through its control of synoptic atmospheric 

systems and the associated strength and path of moisture transport from the oceans onto the land, 

is well enough understood that seasonal climate forecasts based on such dynamics are now 

widespread (Changnon, 1999; Barnston et al., 1994; 1999; Goddard et al., 2001; Latif et al., 

1998).  Perhaps the most recognized of these climate-determining “teleconnections” is the El-

Nino Southern Oscillation (ENSO), which has been found to have a robust influence on North 

American climate (Trenberth, 1997; Livezey et al., 1997; Piechota and Dracup, 1996), although 

other ocean-atmosphere dynamics such as the Pacific Decadal Oscillation (PDO) are also thought 

to moderate ENSO effects (Mantua, 1997).  A combination of statistical and dynamical methods 

for forecasting ocean temperature and associated atmospheric effects has been adopted at a 

number of operational and research weather and climate centers (e.g., National Centers for 

Environmental Prediction, NCEP; NASA Seasonal to Interannual Prediction Project, NSIPP; and 

the International Research Institute, IRI), resulting in the evolution of an operational capability 

for seasonal climate forecasting.  At NCEP, for example, operational seasonal forecasts are based 

on a merging of forecasts based on several statistical methods in addition to ensemble output 

from the Global Spectral Model (GSM), an ocean-land-atmosphere general circulation model 

(OAGCM), the current version of which is called the Seasonal Forecast Model (SFM: Kanamitsu, 

et al., 2002).   

Despite the operational availability of seasonal climate forecasts, hydrologic applications have 

largely been restricted to research settings and for the most part have not found their way into 

operational procedures (with the possible exception of modifications to ESP at NWS described by 

Perica et al., 2000).  Aside from questions concerning climate model forecast skill, downscaling 

climate model output to the river basin scale has been a major obstacle.  A wealth of literature 

(e.g, Wilby et al., 1997; 1998; Murphy, 1999) addresses the downscaling problem from an 

atmospheric science perspective, but fewer studies have addressed the challenges of downscaling 

climate model outputs for the purpose of hydrologic simulation.  Hay et al. (2002), for example, 

compared the suitability of statistical and dynamical approaches for downscaling climate model 
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simulations.  Wilby et al. (2000) performed a similar study, using NCEP/NCAR reanalysis 

simulations to derive hydrologic model forcings for the Animas River basin in Colorado.  More 

recently, Clark et al. (2004) suggests the use of non-parametric methods to restore plausible 

spatial and temporal structure to climate model-based ensemble forecasts where it is lacking.  

Shaman et al. (2003) produced seasonal surface wetness forecasts by sampling an observed 

climatology to reflect distributional shifts in probabilistic climate forecasts.   

Both Clark et al. (2004) and Shaman et al. (2003) resolve the downscaling problem by imposing 

observed local climatological structure onto climate model forecast signals, using resampling 

approaches to generate daily or shorter weather sequences.  This general strategy was also 

adopted in Wood et al. (2002; reproduced as Chapter II), who surmounted the downscaling 

obstacle using a climate-model scale monthly bias-correction step followed by statistical spatial 

and temporal disaggregation.  The process interprets climate model forecasts (of precipitation and 

temperature) relative to their respective climatological probability distributions (estimated from 

retrospective climate model simulations), which allows a mapping to the observed climatology in 

a way that eliminates most or all temporal and spatial climate model bias at the daily to monthly 

time scale.  Using 20 years of a historical climate model simulation, Wood et al. (2004) 

demonstrated that this statistical downscaling approach compared favorably with dynamical 

downscaling in that the same retrospective simulation downscaled via a regional climate model 

was found to require additional bias-correction to yield similar results – a result consistent with 

the findings of Hay et al. (2002).  In the East Coast U.S. summer 2000 drought example 

evaluated by Wood et al. (2002), hydrologic forecast skill arose mostly from predictability in the 

evolution of initial hydrologic conditions (primarily soil moisture); whereas an El Nino example 

appeared to show that additional skill accrued from the climate model forecasts.  The results of 

Wood et al. (2002) were mostly qualitative, but nonetheless suggested that a more quantitative 

assessment of the climate model-based hydrologic forecasting approach was warranted. 

In this paper, we apply the approach of Wood et al. (2002) over the western U.S. and determine 

the extent to which a hydrologic forecasting approach based on downscaling of global ensemble 

climate forecasts can yield hydrologic prediction skill in excess of that achievable using 

climatological meteorology forecasts.  Using a 21-year GSM retrospective forecast (also termed 

“hindcast”) dataset, we compare the GSM-based hydrologic forecasts with climatological 
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ensemble forecasts and with ESP forecasts.  Because recent work suggests that the forecast skill 

of the NCEP seasonal (climate) forecasting model is higher in strong warm and cold ENSO 

periods than under ENSO neutral conditions (Kanamitsu et al., 2002), we also assess composites 

of GSM- and ESP-based forecasts that have strong ENSO anomalies in the forecast initiation 

month.  Our conclusions focus on streamflow at selected locations throughout the western U.S. 

and basin-averages of monthly climate and hydrologic variables for the five USGS hydrologic 

regions in the western U.S. (Figure 4.1).  

2. APPROACH 

We created retrospective six-month lead forecasts of hydrologic variables with a macroscale 

hydrologic model driven by land surface variables derived from a) a global OAGCM, after 

downscaling; and b) observed meteorology, via the ESP method.  The retrospective forecasts 

span the period 1979-1999, and are for four initiation months – January (JAN), April (APR), July 

(JUL) and October (OCT).  GSM and ESP forecast skill for monthly basin-averaged variables -- 

temperature and precipitation, snowpack, runoff and soil moisture -- and for streamflow is 

evaluated relative to the skill of forecasting the climatological distribution of each, taken from a 

retrospective observational analysis.  Note that the hydrologic model was forced by spatially 

distributed land surface variables (primarily precipitation and temperature) at the 1/8 or 1/4 

degree spatial resolution; hence the assessment of forecast skill for basin-averaged forcings and 

derived hydrologic variables is a convenience to provide additional summary insight.  From an 

operational standpoint, the primary focus would be streamflow forecast accuracy.   

2.1 Observational Analysis 

The western U.S. domain of the study was divided into five major regions (Figure 4.1):  the 

Pacific Northwest (PNW), the major river basin within which is the Columbia River basin (CRB); 

California (CA), containing the Sacramento-San Joaquin River basin (SSJB); the Colorado River 

basin (CORB), the Great Basin (GB) and the upper Rio Grande River basin (RGB).  Over this 

domain, the observation-derived surface forcings and derived hydrological fields used to assess 

the downscaled climate model outputs were created as described in Maurer et al. (2002), which 

presents a 1/8 degree meteorological analysis and associated hydrologic simulation of land 

surface energy and water variables run at a 3 hour time step over the continental US (as well as 
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part of Canada and Mexico) for the period 1950-2000.  The 1/8 degree climate variables (daily 

precipitation, minimum and maximum temperatures and wind speed) for the 21-year retrospective 

hindcast assessment period (and a 2-year prior hydrologic model spin-up period) were taken 

directly from the Maurer et al. (2002) dataset, and the hydrologic variables were generated via 

retrospective daily hydrologic simulation driven by the climate variables.  The ¼ degree climate 

variables (used for simulations in the larger CRB, CORB and GB) are aggregated from the 1/8 

degree climate variables.   

The hydrologic model (section 2.2.1) was calibrated and validated using observed naturalized 

streamflows (water management effects removed), to the extent that these data were available.  

For the “observational” verification dataset (the baseline for assessing hindcast ensemble 

performance), however, we used simulated historic streamflow, based on inputs of the 

retrospective forcing dataset.  This choice eliminated the confounding effects of streamflow 

simulation errors, and provided consistency with the use as a baseline of simulated historical 

values (from the retrospective hydroclimatology) for spatial variables (e.g., soil moisture or grid-

cell runoff), observations for which are, to our knowledge, nonexistent.   

2.2 Models and Simulations 

2.2.1 Hydrologic model 

The Variable Infiltration Capacity (VIC) model of Liang et al. (1994; 1996; see also Cherkauer et 

al., 2003) is a semi-distributed grid-based hydrological model which parameterizes the dominant 

hydrometeorological processes taking place at the land surface-atmosphere interface.  For this 

study, the VIC model simulated the daily water balance (although with a sub-daily time step for 

certain moisture and energy-related calculations, and for snow simulation), and required as 

meteorological inputs (forcings) daily precipitation, maximum and minimum temperature, and 

daily average wind speed, for each model grid cell.  Grid-cell runoff and baseflow was routed via 

a separate channel routing model to produce streamflow at selected points within the simulation 

domain.  The VIC model has been implemented previously, at various resolutions, for the entire 

study domain (Figure 4.1) and details are available in the following references:  CRB (Nijssen et 

al., 1997; Payne, et al., 2004); SSJB (Van Rheenen et al., 2004); CORB (Christensen et al., 

2004); GB and RGB (Maurer et al., 2002).   
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Figure 4.1 VIC hydrologic model calibration and streamflow forecasting sites selected for 
this paper.  The numbers correspond to stations listed in Table 4.1; the heavy 
lines delineate the five basin areas (CRB, SSJB, CORB, GB and RGB) used for 
averaging climatic and hydrologic variables; and the light gray lines show the 
channel routing network used to transform VIC cell runoff to streamflow (only 
the network areas upstream of the stations were used). 
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Although the model forcing data span the period 1949-2000, the period of analysis used here was 

1977-2000, which included the hindcast evaluation period plus two prior years (1977-78) for 

model spin-up.  Model calibration was accomplished as a separate exercise, for most basins as 

part of the cited previous implementations (see references above for details).  In general, the VIC 

model is calibrated by varying parameters related to infiltration and subsurface drainage, with the 

aim of reproducing monthly streamflow volumes while preserving the general features of the 

daily response (e.g., daily average flow peaks and recessions).  Monthly validation results from 

each basin are shown in Figure 4.2 for five of the 25 streamflow forecast points (one in each 

basin) used in the study (listed in Table 4.1).   

2.2.2 Climate model 

The hydrologic forecasting approach used 6-month climate model ensemble forecast fields 

(monthly total precipitation and average temperature – Ptot and Tavg) produced by the NCEP 

Global Spectral Model (GSM).  GSM is one component of a forecasting system used by CPC to 

generate six-month lead forecasts of global surface precipitation and temperature, as well as other 

atmospheric variables.  Each month, GSM generates a 20-member ensemble of 6-month lead 

climate forecasts.  The 20 forecast ensemble members are produced by using 20 different 

atmospheric initializations with predicted SSTs in the tropical Pacific Ocean as of the date of the 

forecasts (Ji et al., 1998).  The forecasts are accompanied by a 210-member ensemble of climate 

hindcasts (also six months long, matching the calendar months of the forecasts) for the period 

1979-99 (21 years).  The hindcast ensemble generation process is similar to that used to produce 

the forecasts, except that the ensemble members are produced by using 10 different atmospheric 

initializations with observed SSTs for each of the 21 years in the 1979-99 hindcast.  GSM 

forecast spatial resolution is currently (as of 2003) T62 (approximately 1.8 degrees 

latitude/longitude).   

For this study, hindcasts for JAN, APR, JUL and OCT were used to derive hydrologic hindcasts 

(10-member ensembles) in every year of the climatology period, 1979-1999.  Note that because 

the GSM hindcasts were created using retrospectively analyzed SSTs, their skill represents the 

upper bound of the skill afforded using current SST-forecasting techniques (essentially perfect 

foresight of SST is used in this analysis).  We are unaware of the existence of a retrospective 

hindcast dataset that uses forecasted SSTs (as is the case for the real-time forecasts).  
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Table 4.1 Streamflow forecast locations.  Abbreviations in italics indicate that naturalized 
monthly flows were available for calibration. 

 

# ABBREV 

 

USGS # or CDEC1 
ID 

 

NAME 

Drainage 
Area 

(km2)  

1  CORRA 12322730 Kootenai R. at Corra Linn Dam, BC 45,843 

2  CHIEF 12437990 Columbia R. at Chief Joseph Dam, WA 195,286 

3  ICEHA 13352980 Snake R. at Ice Harbor Dam, WA 281,015 

4  DALLE 14105700 Columbia R. at the Dalles, OR 613,830 

5  SHAST SHA (USBR2) Sacramento R. at Shasta Dam, CA 17,262 

6  OROVI FTO (CADWR) Feather R. at Oroville, CA 9,386 

7  FOLSO AMF (CADWR) American R at Folsom, CA 4,856 

8  SANJO 11251000 / SJF San Joaquin R. below Friant, CA 4,341 

9  GUNNI 09152500 Gunnison R. at Grand Junction, CO 20,534 

10 SANJU 09379500 San Juan R. near Bluff, UT 59,570 

11 GREEN 09315000 Green R. at Green River, UT 116,162 

12 COLOR 09429500 Colorado R. below Imperial Dam, CA-AZ 477,855 

13 DELNO 08220000 Rio Grande R. near Del Norte, CO 3,419 

14 LOBAT 08251500 Rio Grande R. near Lobatos, CO 19,943 

15 CHAMA 08290000 Rio Chama R. near Chamita, NM 7,884 

16 RIOGR 08330000 Rio Grande R. at Albuquerque, NM 37,555 

17 FTCHU 10312000 Carson R. near Ft. Churchill, NV 3,372 

18 HELKO 10318500 Humboldt R. near Elko, NV 7,198 

19 PLAIN 10141000 Weber R. near Plain City, UT 5,390 

20 CORIN 10126000 Bear R. near Corinne, UT 18,205 
1CA Department of Water Resources (CADWR) CA Data Exchange Center 
2US Bureau of Reclamation 
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Figure 4.2 VIC monthly streamflow simulations and observations for a representative site in 
each major basin.  Monthly averages of daily simulated flow time series are 
compared with naturalized monthly flows (first four locations) and with 
measured (i.e., unreconstructed) flows (for Carson R.). 
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2.3 Ensemble Forecast Methods 

For each of the four forecast initiation months and for the five basins of Figure 4.1, we produced 

forecasts using two methods:  ESP and the downscaling (via the method outlined in Wood et al., 

2002) of GSM climate forecast ensembles. 

For both forecast approaches, we initialized the hydrologic model with a 1.5-2 year spin-up 

simulation (using observed surface forcings) that yielded the current moisture states (in snowpack 

and soil) for the start date of the forecasts.  Because the GSM forecasts are available near the 

beginning of each month but lack information for the initial month, the start date for each 

hydrologic forecast was 5 days before the beginning of the following month (GSM forecast 

month 1), which approximates the lead time needed to produce and process the hydrologic 

forecasts (ahead of month 1) if the procedure were implemented in real time.  From the 

hydrologic forecast start date forward, the hydrologic model was forced with ensembles of 

surface variables derived via one of the two methods, producing daily output for the six month 

forecast period.  Daily runoff and baseflow were routed to produce streamflow, and the 

streamflow and other variables were averaged to a monthly time step for skill evaluation. 

2.3.1 Bias correction and downscaling of climate model (GSM) forecasts 

The method adopted for producing daily hydrologic model inputs from climate model output, in 

this case monthly mean temperature (Tavg) and total precipitation (Ptot), is presented in Wood et 

al. (2002).  In brief, monthly GSM outputs for each climate model cell centered within the study 

region were first bias-corrected on a cell-by-cell basis.  Bias-correction was effected by 

evaluating the GSM ensemble hindcast variables (Tavg and Ptot) as percentiles relative to the GSM 

model climatology, and then extracting the percentiles’ associated variable values instead from 

the observed climatology -- a transformation described in Panofsky and Brier (1963).  The 

observed climatology was the observational analysis (section 2.1) for the period 1979-99 (i.e., the 

retrospective climate model run period), averaged to the GSM grid resolution.  The GSM 

climatology comprised the monthly Tavg and Ptot distributions from the GSM hindcast simulations 

for the same period.  The mapping from GSM to observed climatology translated the hindcasts to 
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a plausible range with respect to observations.  The adjustments varied spatially at the GSM grid 

scale (at which the mapping was performed) as well as by calendar month.   

Following bias correction, the monthly GSM-scale forecast anomalies were disaggregated to the 

spatial and temporal scale of VIC model inputs via a simple statistical downscaling step.  The 

monthly time step, bias-corrected GSM-scale hindcast Tavg and Ptot sequences were expressed as 

anomalies with respect to GSM-scale 1979-99 monthly means.  The anomalies were then 

spatially interpolated to the 1/8 or 1/4 degree VIC cell centers and applied to the monthly 

observed 1979-99 1/8 or 1/4 degree cell means (from the observed climatology described in 

Section 2.2.1), to create monthly forecast sequences at the VIC model scale.  A final temporal 

disaggregation step, the details of which are presented in Wood et al. (2002), was used to form 

daily time step inputs for the VIC model.  Like the Clark et al. (2004) approach, the statistical and 

temporal disaggregation creates VIC scale daily forcing time series corresponding to the GSM-

scale sequences, but exhibiting the VIC-scale spatial and temporal correlation characteristics. 

2.3.2 Extended Streamflow Prediction (ESP) forecasts 

The ESP method involves the estimation of the hydrologic state at the time of forecasts using 

hydrologic simulations driven by recent observed surface forcings up to the time of forecast, 

followed by the simulation of a hydrologic ensemble driven by an ensemble of forecast surface 

forcings over the forecast period.  For consistency with the GSM hindcast set, we drew the ESP 

initiation dates and meteorological sequences from the same 21-year period spanned by the GSM 

hindcasts (1979-1999).  JAN ESP hindcast ensembles, for example, were initialized in every 

January from 1979-1999, and each hindcast had 21 meteorological sequences or ensemble 

members.  For an operational application of ESP, forcing sequences would likely be chosen based 

on other strategies, e.g., use of the longest period for which surface forcings could be estimated.   

3. RESULTS 

Results were assessed using a simple root mean square error (RMSE)-based skill score of the 

form:  

)(
)(1

forecastreferenceRMSE
forecastRMSESSrmse −=  
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The skill score format is described in Wilks (1995), and equals one for perfect forecasts, zero for 

forecasts no better than the reference forecast, and is unbounded below zero for forecasts that are 

worse than the reference forecast.  Using the skill score, the GSM-based ensemble forecast skill 

was measured relative to reference forecasts consisting of (1) a climatological ensemble and (2) 

the ESP-based ensemble.   

The climatological ensemble (CLIM) comprised the monthly distributions of the different climate 

and hydrologic variables, and streamflow, from the hindcast period, 1979-99, taken from the 

observational analysis of section 2.1.  For the climate variables, Ptot and Tavg, CLIM is equivalent 

to the unconditional ESP, while for the hydrologic variables and streamflow, the ESP ensembles 

benefit (unlike CLIM; like GSM) from knowledge of initial hydrologic conditions.   

The statistical significance of the skill scores for streamflow and basin averages was assessed 

using a Monte Carlo procedure in which a 500-member distribution for each skill score was 

generated and the 95 percent confidence limits were noted (i.e., at p=0.025 and p=0.975). The 

skill score distributions are particular to each month, basin and variable, each streamflow site and 

statistic, and each forecast start date.  Both conditional and unconditional forecasts skill scores 

were evaluated with respect to the unconditional confidence interval limits. The skill score 

probability distributions were generated by randomly varying the sequencing of the observational 

time series (using random resampling by year, with replacement) against which the forecast time 

series (e.g., for the basin averaged or streamflow variables) were verified.  This procedure created 

a distribution of skill scores resulting from an experimental process that has no inherent skill, 

hence values higher or lower than the confidence limits should have skill that is unlikely to have 

arisen by chance.  The Monte Carlo method was chosen because the small and varying sample 

sizes involved in the RMSE calculation precluded a straightforward analytical calculation of 

significance.  

3.1 Unconditional Forecasts 

The unconditional (i.e., using all 21 retrospective assessment years) forecast results are presented 

in Figure 4.3 and Table 4.2.  Figure 4.3 shows the performance of the all-years GSM-based 

forecasts for basin-wide averages of monthly Ptot, Tavg, total runoff (RO), average soil moisture 

(SM) and snow water equivalent (SWE), relative to the CLIM ensembles (top) and to the ESP 
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ensembles (bottom), for each forecast initiation date.  Based on the significance analysis, skill 

results that are not significant are hashed.  Those which could not be calculated (i.e., for SWE in 

summer) are shown in gray.  Table 4.2 summarizes the associated streamflow forecast skill 

results for cumulative flow in months 1-3 (Q3) and months 1-6 (Q6) of the forecast, where month 

1 immediately follows the forecast initiation month.  Statistically significant and better (worse) 

GSM skill scores are bolded (underlined). 

As noted previously, the basin-averaged variable results are shown to afford a sense of hydrologic 

forecast performance at the regional scale, with length scales comparable those at which climate 

forecasts show significant spatial variation.  Correspondence with the streamflow forecast results 

is expected when and where the skill of the basin average forecasts is very high, but otherwise, 

skillful basin average forecasts do not guarantee skillful streamflow forecasts.  One reason is the 

discrepancy in the areas of the streamflow drainage basins and the five large reporting basins 

(particularly for some RGB, GB and SSJB drainages).  Another factor is the different averaging 

periods used for streamflow and the basin averages (1-month versus 3- and 6-month), coupled 

with the monthly varying importance of variables in the hydrologic cycle for generating 

streamflow.  For example, a RO forecast may be skillful in June and July but not May, but May 

have more RO than June and July together, leading to insignificant streamflow forecast skill for 

the May-July average.  The basin-averaged hydrologic forecast performance is only suggestive of 

the potential for arbitrary streamflow forecasts within each region (perhaps better tailored in time 

and space than those presented here) to derive skill from the GSM climate forecasts. 

3.1.1 JAN forecast (February-July) 

With the exception of CRB February-March Tavg and CORB March Ptot, the downscaled GSM 

JAN climate forecasts exhibit no significant skill.  Nonetheless, significant hydrologic forecast 

skill exists at 4-6 month lead times for SM and SWE (entire domain), relative to CLIM (Figure 

4.3a, top), as a result of initial conditions.  For RO, forecast skill varies by basin:  it is present at 5 

month lead times for CORB and RGB, and several months for the other three basins, centered on 

their primary runoff season (e.g., April-July).  GSM hydrologic forecast skill relative to ESP, in 

contrast, is much reduced (Figure 4.3a, bottom).  For SM and SWE, CORB continues to show 

moderate skill at 4-5 month lead times.  To a lesser extent, this is true of SSJB and GB as well, 

although significant skill at 1-2 month lead time is gone.  GSM forecast RO skill is significantly 
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worse than ESP in the CRB (April) and RGB (February-March), but still better in a few months 

for SSJB (May-June) and CORB and GB (June).   

The residual GSM CORB SWE and SM skill is attributable to large systematic errors in the ESP 

ensembles resulting from combination of several wet-warm Februarys (e.g., 1998) with above 

average initial SWE (e.g., 1979).  The associated February melt elevates SM (raising ESP SM 

error) and also RO, although the effect on RO is buffered by the consequent restoration of winter 

soil moisture deficits.  As a result, GSM SWE and SM forecasts are significantly better than ESP 

forecasts while RO forecasts are not significantly different. 

Because runoff generation is a dynamic, non-linear process in which the sensitivities to 

precipitation and temperature are not independent, and vary by month, significant skill for Ptot 

and/or Tavg separately does not guarantee RO skill either in concurrent months or even at a lag.  

The degree to which GSM correctly simulates the observed joint distributions of precipitation and 

temperature (e.g., wet-warm versus wet-cold periods) can also be an important factor.   

Results for JAN streamflow forecast skill (Table 4.2) are reasonably consistent with the basin 

average RO forecast skill maps.  Relative to CLIM, CRB has significant skill at one site for Q3 

flows, and two for Q6 flows, whereas the other basins have skill at 2-4 sites for Q3 flows, and all 

sites for Q6 flows.  Compared to ESP, however, GSM streamflow forecast skill is mostly 

negligible or significantly worse (as in the CRB), with the main exception being several GB Q6 

flow forecasts (which had RMSE reductions of about 10-20 percent relative to ESP).  The latter is 

likely to be a result of a relatively skillful GSM June RO forecast.   
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3.1.2 APR forecast (May-October) 

In the APR forecast (Figure 4.3b), climate variables (Ptot and Tavg) again show little or no skill.  

The GSM hydrologic forecasts relative to CLIM (Figure 4.3b, top), however, have high skill 

levels for SWE for the remainder of the snow season in each basin:  up to 6 months for CRB, 3 

months (RGB), 2 months (CORB), and 1 month (SSJB and GB).  SM forecast skill extends for 

all basins for 2-6 months, and RO skill for 2-5 months, longest for SSJB and shortest for GB.  

Relative to ESP (Figure 4.3b, bottom), GSM hydrologic forecast skill is again greatly diminished, 

although for several basins, despite the lack of climate forecast skill, the GSM forecasts have 

slight skill advantages in SWE and RO at 1-3 month lead times.  SSJB, as in the JAN forecasts, 

has an extended period of significant skill (May-August), but this is followed by significantly 

worse skill than ESP.  The high apparent significance of the GSM August CORB SWE forecast 

is likely to result from unstable statistics when SWE is near zero, and matters little 

hydrologically. 

The GSM APR streamflow forecasts (Table 4.2) are, unsurprisingly, highly skillful at all sites for 

the Q3 and Q6 flows, relative to CLIM (primarily because of initial snowpack water storage).  

With respect to ESP, however, the only locations with significantly better GSM forecast skill are 

several GB sites.  Elsewhere, GSM forecast skill is insignificant or significantly worse than ESP 

forecast skill, particularly in the RGB.  The GSM GB streamflow forecast skill may be associated 

with June RO skill, but there is lack of streamflow forecast skill for CORB, even given better RO 

forecast results as compared to GB (i.e., better GSM RO for May as well as June).  The negative 

results for RGB relative to ESP are also not clearly associated with RO results of Figure 4.3b. 

In the CORB, the ESP RO forecast error is dominated by the observed climate anomalies from 

two ensemble years, the most extreme of which (1995) has an exceedingly wet-cold May-June.  

The meteorological sequences for this year (and the other), appearing in all 21 ESP ensembles, 

inflate the RMSE of SWE and RO in May and June, hence the better GSM forecast skill for these 

variables (note that the buffering soil moisture effect of the JAN forecasts is not present in APR, 

since initial soil moisture deficits are smaller than in winter).  At the monthly level, total runoff 

and streamflow are highly correlated (albeit with some differences in large drainages related to 

channel routing).  The GSM Q3 flow forecasts, however, exhibit extremes in some years that are 
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comparable to ESP Q3 extremes, resulting in part from differences between GSM and 

observations in the monthly autocorrelations of precipitation and of runoff anomalies (in this 

case, observed correlations for Ptot and RO from May to June are -0.22 and -0.66, respectively, 

whereas GSM correlations are 0.08 and -0.20).  As a result, GSM streamflow sequences have a 

greater tendency to compound sequential anomalies in these high flow months, and the GSM 

monthly RO forecast skill advantages in June and July, separately, do not lead to a GSM forecast 

skill advantage in Q3 flows.  Although we do not apply any here, approaches for disaggregating 

runoff volume forecasts (e.g., Pei et al., 1987) may be useful for adjusting biased monthly runoff 

autocorrelations. 

The CORB RO/SWE/Q3 results would likely differ were a larger ESP ensemble used or a more 

restrictive screening of GSM forecast anomalies employed – that is, they appear to be determined 

in part by methodological choices (e.g., the period of analysis, the screening of precipitation 

outliers).  The APR and JAN CORB forecast skill diagnoses exemplify the season-, basin- and 

flow site-specific variation in ensemble error characteristics that cloud the interpretation of some 

of the remaining results, particularly where the relative advantage of GSM or ESP forecasts is 

weak.  We do not include here a diagnosis of every case, but rather suggest that the reader view 

only the stronger of the GSM forecast skill significance results (positive or negative) as being 

robust to potential methodological variations. 

3.1.3 JUL forecast (August-January) 

GSM JUL climate forecasts (Figure 4.3c) show significant skill for Ptot only in August (CRB) and 

Tavg only in November (CORB) and January (CRB).  Because initial SWE is still present at 

higher elevations in CRB and SSJB, short lead forecast skill relative to CLIM (Figure 4.3c, top) is 

present in these two basins for SWE and RO.  The most extensive forecast skill is for SM, 

ranging from 1 month lead for RGB to 6 months for CRB.  With respect to ESP (Figure 4.3c, 

bottom), GSM hydrologic forecasts have skill that is at best barely better than the climate 

forecasts, and significantly worse skill at times, e.g., August RO for SSJB. 
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Figure 4.3a JAN GSM forecast average SSrmse (top: with respect to CLIM; bottom: with 
respect to ESP) for all forecast years in the period 1979-1999.  
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Figure 4.3b APR GSM forecast average SSrmse (top: with respect to CLIM; bottom: with 
respect to ESP) for all forecast years in the period 1979-1999.  
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Figure 4.3c JUL GSM forecast average SSrmse (top: with respect to CLIM; bottom: with 
respect to ESP) for all forecast years in the period 1979-1999.  
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Figure 4.3d OCT GSM forecast average SSrmse (top: with respect to CLIM; bottom: with 
respect to ESP) for all forecast years in the period 1979-1999. 
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Relative to CLIM, the associated GSM Q3 flow forecasts (Table 4.2) show greater skill in the 

CRB and SSJB basins, while the RGB has greater skill for the Q6 flows only.  These results 

appear to be consistent with the RO map, on which RGB has skill in November.  With respect to 

ESP, the GSM Q6 but not Q3 flow forecasts show skill in SSJB, perhaps as associated with RO 

skill scores that are positive, despite not reaching significant levels. 

3.1.4 OCT forecast (November-April) 

The GSM OCT climate forecasts (Figure 4.3d) show generally no more skill than in the other 

forecast sets, excepting a slight winter Tavg (CRB) and March Ptot (CORB) skill advantage, both 

of which also appear in the JAN forecast.  The notable feature of the hydrologic forecasts with 

respect to CLIM (Figure 4.3d, top) is the significant skill for SM at short and long leads, for most 

basins, while skill for other variables is negligible.  Taken relative to ESP (Figure 4.3d, bottom), 

however, SM skill remains only for RGB (at all leads) and CORB (at 1 and 5-6 month leads), and 

the other variables again show no skill or significantly worse skill (e.g., GB SM). 

With respect to CLIM, the GSM streamflow forecasts (Table 4.2) show little or no skill in the 

CRB, SSJB and GB, whereas the RGB flow forecasts are skillful for both Q3 and Q6 flows, and 

the CORB forecasts are skillful mostly for Q3 flow forecasts.  Compared to ESP, however, the 

GSM flow forecasts show mostly negligible skill, and a few locations have significant negative 

skill.  In this case, the streamflow results are reasonably consistent with those for areal RO.  

3.2 Conditional (ENSO-defined) Forecasts 

The conditional forecast results are presented in Figure 4.4 and Table 4.3.  Figure 4.4 shows 

forecast performance for the strong ENSO years -- i.e., having an absolute Nino3.4 SST anomaly 

greater than 1.0 in the forecast initiation month -- for GSM-based forecasts for Ptot, Tavg, RO, SM 

and SWE, relative to the ESP ensembles (CLIM not shown), for each forecast initiation date.  

Out of 21 possible years, eight JAN forecasts were so classified, and four, five and six years were 

eligible in the APR, JUL and OCT conditional forecasts, respectively.  Table 4.3 summarizes the 

associated streamflow forecast skill results for cumulative 3- and 6-month flows (denoted Q3 and 

Q6) beginning in the month following each initiation date.  Conventions for showing significance 

are the same as in Figure 4.3 and Table 4.2. 
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3.2.1 JAN forecast (February-July) 

The GSM JAN strong ENSO climate forecasts (Figure 4.4a, top) are better than the unconditional 

JAN forecasts, showing significant Tavg skill in most of the basin for a four month lead, with 

occasional skill in February-March Ptot (although improved skill in March is followed by negative 

skill in April, in CORB and RGB).  The main changes in hydrologic forecast skill from the 

unconditional case (Figure 4.3a, bottom) include both skill improvements for RO (CRB May, 

SSJB Feb, GB May) and RO skill decreases (CORB Apr-May, GB Apr, RGB Mar-Jul).  Also, 

SM skill improves in SSJB while worsening in CORB, and SWE skill increases most of the 

basins, but decreases in CORB (Mar) and RGB (May).  Streamflow forecasts (Table 4.3), 

particularly for Q6 flows, improve in CRB and SSJB, but worsen in CORB and RGB, which is 

reasonably consistent with monthly RO forecast skill changes.  Note that the conditional GSM 

and ESP ensembles, like the unconditional ensembles, had 10 and 21 members, respectively, but 

the number of ensembles used to calculate the skill score for the conditional forecasts was 

smaller, hence the results in this section are more vulnerable to sampling influences.   

3.2.2 APR forecast (May-October) 

Relative to the unconditional APR forecasts (Figure 4.3b), the GSM APR conditional climate 

forecasts (Figure 4.4a, bottom) show both better and poorer Ptot skill (varying by month and 

basin), but better late summer Tavg skill in a number of basins.  Hydrologic forecast skill for RO 

and SM generally declines compared to the unconditional ensembles, except in isolated months 

for a few basins (e.g., CRB August and October RO).  Conditional GSM SWE forecast skill is 

somewhat better in months 1 and 6, and generally worse at other times, than the unconditional 

forecast skill.  The results for streamflow (Table 4.3) are mixed in each basin, and the most 

notable result is worsening forecast skill in CORB, RGB and GB, relative to the unconditional 

APR forecasts. 
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Figure 4.4a GSM forecast average SSrmse (with respect to ESP) for forecasts made when 
absolute NINO3.4 SST anomalies in the forecast month are larger than 1.0 
degree Celsius.  (top) JAN and (bottom) APR forecasts. 
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Figure 4.4b GSM forecast average SSrmse (with respect to ESP) for forecasts made when 
absolute NINO3.4 SST anomalies in the forecast month are larger than 1.0 
degree Celsius.  (top) JUL and (bottom) OCT forecasts. 
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3.2.3 JUL forecast (August-January) 

The GSM JUL Tavg forecasts (Figure 4.4b, top) improve upon the unconditional JUL forecast 

(Figure 4.3c), and Ptot also has occasional skill increases, the most important coming in January, 

for SSJB, CORB and GB.  Consequently, GSM RO forecast skill increases at short leads in CRB 

and in January for the other four basins.  The RO improvements are somewhat represented in 

streamflow (Table 4.3), which has better conditional than unconditional forecast skill in the CRB 

for the Q3 flows, and particularly in SSJB for the Q6 flows.  For CORB and RGB, however, 

streamflow skill diminishes, possibly as a result of negative SM skill in several months. 

3.2.4 OCT forecast (November-April) 

The conditional OCT GSM climate forecasts (Figure 4.4c, bottom) have generally better skill 

than the unconditional forecasts (Figure 4.3d), but this result varies by month and location:  Tavg 

forecast skill improves, mainly in the CRB (where Ptot skill changes are mixed); and Ptot skill 

increases in SSJB, CORB and GB.  In those basins, because better Ptot skill is found at times 

when precipitation is important hydrologically, RO, SM and SWE also improve in at least a few 

months.  For streamflows (Table 4.3), the conditional forecasts particularly benefited SSJB (both 

Q3 and Q6 flows) and GB, and to a lesser extent CRB. 

4. DISCUSSION AND CONCLUSIONS 

The foregoing analysis was designed to assess quantitatively the added value of climate model 

forecast inputs from the NCEP GSM to a hydrologic forecast system for the western U.S., relative 

to ensembles of historical meteorology (ESP). Because previous work has indicated that GSM 

climate forecast skill is improved during extreme ENSO events, the analysis was extended to a 

strong-ENSO composite ensemble forecast.  The assessment was based on forecasts of 

streamflow at 20 locations and of monthly basin averages for snow water equivalent (SWE), total 

runoff (RO) and soil moisture (SM).   

Although a number of methodological issues (discussed below) bear on the results, the analysis 

supports the following general conclusions. 
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• The large discrepancy in GSM forecast skill when compared to with respect to CLIM (a 

baseline climatology forecast) and with respect to ESP (which benefited from the initial 

condition information) underscored the well known finding that substantial hydrologic 

forecast skill is possible based on the predictable evolution of initial hydrologic 

conditions.  For RO and SWE, initial condition skill was highest in winter and spring, 

extending up to 6 months in some locations, and it was generally present throughout the 

year for SM.   

• For streamflow, skill tended to mirror that of RO when RO forecast skill was high, but 

otherwise the varying monthly importance of runoff for streamflow generation 

complicated this association.   

• The unconditional GSM climate forecasts did not generally have enough skill 

(particularly in precipitation) to improve on the skill of the ESP approach.  Intermittent or 

minor skill improvements in some basins for SWE, SM and RO did not necessarily 

translate into streamflow forecast improvements.  

• The conditional (ENSO composite) results verified that GSM climate forecast skill is 

enhanced in strong ENSO phases, particularly for temperature.  For precipitation, results 

were mixed, with SSJB and CRB benefiting while CORB and RGB saw forecast 

performance become significantly worse.  The superior skill for temperature in some 

locations led to better SWE forecast than were achieved via ESP, in some cases further 

translating into better RO and SM skill.  Basin average RO forecast skill increases (e.g., 

SSJB) or decreases (e.g., CORB and RGB) for the conditional forecasts were large 

enough and temporally extensive enough to be reflected in streamflow (for better or 

worse). 

That the climate model offers a significant skill improvement under certain conditions is 

encouraging, yet there are several reasons why the skill improvement may be less significant than 

the results of section 3 indicate.  The assessment is unabashedly a posteriori, searching for skill in 

every possible location and month.  Each combination of basin, forecast month, initiation month, 

and variable combination is taken to be independent -- a simplifying, but demonstrably false 

assumption.  By ignoring interdependence, the levels of statistical significance are likely to be set 
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too low for any given combination, and the broad survey creates a greater chance that statistically 

significant results may arise spuriously.  Also, the GSM forecast assessment is based on 

retrospectively produced forecasts (hindcasts) driven by observed SST fields.  The actual 

forecasts must rely on forecast SSTs, which have inferior skill, thus the results likely overstate the 

skill of the GSM forecast, particularly at long lead times.  Lastly, some of the skill discrepancy 

between the GSM and ESP forecasts may result from differing variance in the 10- and 21-

member ensembles, as well as the vulnerability of skill scores based on the small ensembles to 

the influence of outlying meteorological sequences.  This last concern is particularly relevant for 

the strong ENSO forecast results, which draw on fewer (but equally sized) ensembles.  The GSM-

based ensembles tend to have slightly lower variance due to the way they are downscaled, which 

would convey an advantage in the RMSE statistic that is the basis for the skill score.  As noted 

earlier, we suggest a conservative appraisal of the results in which only the strongest are viewed 

as being potentially robust to methodological choices and misrepresentative sampling. 

The lesson from this assessment is that the while climate model forecasts presently suffer from a 

general lack of skill, there appear to be locations, times of year and conditions for which they 

improve hydrologic forecasts relative to ESP, and (with careful screening to avoid the opposite 

possibility) could be useful for hydrologic forecasting.  The routine lack of skill, however, is of 

sufficient concern that a pursuit of hydrologic forecast improvements (i.e., beyond ESP) using 

alternative climate forecasts (such as statistical and hybrid dynamical/statistical products) is likely 

to be more fruitful in the near term. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

The primary objectives of this dissertation were to develop, implement and evaluate a hydrologic 

forecasting approach based on the direct statistical downscaling of climate model ensemble 

forecasts for use in the production of hydrologic and streamflow forecasts at monthly to seasonal 

lead times.  The dissertation’s central premise was that such an approach, when used to link land-

ocean-atmosphere and physical hydrology models, could integrate the potential forecast skill 

arising both from ocean-atmosphere teleconnections and from the persistence of initial hydrologic 

conditions.  The evaluation of the hydrologic forecasting approach followed two main avenues.  

The first compared the performance of the downscaling method relative to dynamical 

downscaling with a meso-scale regional circulation model, an alternate downscaling method that 

demonstrably improves surface climate simulation, largely by dint of the regional model’s 

superior resolution of land surface features on which local climate depends.  The second avenue 

determined whether the climate model-based hydrologic forecasts improve upon current forecast 

methods, in light of recent indications that the climate model forecasts have superior skill during 

strong El Nino and La Nina events. 

The main element of the hydrologic forecasting approach is the direct statistical downscaling of 

seasonal ensemble climate forecasts generated by a general circulation model (at spatial 

resolutions much coarser than those used by the hydrologic model) to the river basin scale.  In 

Chapter II, a downscaling method was developed that employed probability mapping methods to 

transform monthly climate model resolution outputs to daily hydrologic model resolution inputs -

- in this case, from the coarser 1.9 degrees spatial resolution of the NCEP Global Spectral 

Model’s (GSM) to the 1/8 and 1/4 degree resolution of the Variable Infiltration Capacity (VIC) 

hydrologic model.  The initial demonstration of the approach for the eastern U.S. (for the drought 

of summer 2000 and the El Nino event of winter 1997) showed that:   

• the downscaling and disaggregation approach reproduced the observed streamflow 

climatology with only minor biases when forced with observed monthly climate variables 
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aggregated to the climate model scale (which confirmed that various simplifying 

assumptions incorporated in the spatial and temporal disaggregation were justified); 

• hydrologic forecast skill derived from use of GSM ensemble forcings for the summer 

2000 drought event appeared to derive largely from hydrologic initial conditions rather 

than from climate forecast skill; and  

• the climate forecast contribution to hydrologic forecast skill during a strong ENSO 

(warm) episode (for November, 1997) was enhanced as compared the summer 2000 

forecasts. 

Although the findings of the eastern U.S. demonstration were mostly qualitative, the apparent 

success of the hydrologic forecasting approach argued for a thorough, quantitative assessment of 

the forecasts’ skill, a challenge that was undertaken in Chapter IV. 

The statistical downscaling strategy introduced and evaluated in Chapter II is simpler than most 

recently published downscaling methods -- either statistical or dynamical -- and is therefore well-

suited to the context of ensemble forecasting.  In Chapter III, further investigations of this 

strategy were undertaken to assess its performance relative to dynamical downscaling.  The 

central analysis was based on a twenty-year retrospective (1975-1995) climate simulation 

produced by the NCAR-DOE Parallel Climate Model (PCM), although a future (2040-2060) 

PCM climate change scenario was also downscaled and evaluated.  The statistical downscaling 

method developed in Chapter II (i.e., bias correction with subsequent spatial disaggregation) and 

two variations (linear interpolation and spatial disaggregation), each applied both with and 

without prior dynamic downscaling (using the Pacific Northwest National Laboratories Regional 

Climate Model, RCM), were evaluated.  The major findings were:   

• only the statistical method was successful in reproducing the main features of the 

observed hydrometeorology from the retrospective climate simulation, whether applied to 

PCM output directly or with the intervening step of dynamical downscaling;  

• linearly interpolated RCM output (i.e., without further downscaling or bias-correction) 

resulted in unacceptably large biases in the hydrologic simulations, although it 
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constituted a much more realistic climate forcing dataset than did linearly interpolated 

PCM output; and 

• the climate sequences derived via the statistical downscaling method were more 

hydrologically useful than those generated by the alternatives evaluated, even if 

dynamical downscaling was used.   

Although these conclusions are based on a multi-decade, continuous retrospective climate 

simulation, consideration of the Chapter III results in light of Chapter II suggests that they are 

valid for seasonal climate forecast applications as well. 

For seasonal to interannual hydrologic forecasting, the rationale for forcing the hydrologic model 

with surface variables derived from climate model forecast fields is that climate model forecast 

skill should augment forecast skill derived solely from initial hydrologic conditions (as captured, 

for instance, in ESP methods and persistence-based forecasts).  To distinguish the degree to 

which this is true with the GSM-VIC implementation of the forecasting strategy, the approach 

developed in Chapter II was implemented in Chapter IV over the western U.S., for a retrospective 

(21-years, 1979-1999) series of forecasts.  The resulting GSM-based forecasts were evaluated 

relative to two baselines:  a climatological forecast (i.e., treating the observed distributions of the 

variables as a forecast ensemble) and ESP forecast.  From this work, it was apparent that the 

GSM-based forecasts provided significant skill for hydrological variables (and streamflow) 

relative to the climatological forecast, particularly in winter and spring.  This result simply 

underscored the ability of the forecasting approach to benefit from knowledge of initial 

hydrologic conditions.  With respect to ESP forecasts (a more stringent benchmark), in contrast, 

the GSM-based forecast skill increases were generally negligible when an unconditional use was 

made of the available GSM hindcast ensembles.  For a composite containing only strong ENSO 

years, however, the GSM temperature forecasts appeared to have more skill in several months of 

each forecast period, throughout the western U.S. domain, but precipitation forecast skill 

increases were rarer, appearing mostly in isolated months, and at times offset by skill decreases.  

These differences yielded both statistically significant improvements and declines in streamflow 

forecasts relative to ESP, depending on the season and region.  The region-specific findings were: 
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• the most convincing streamflow skill increases were for California (except for April 

forecasts), followed by the Columbia River basin (January, July and October forecasts) 

and the Great Basin (for forecasts made in October); yet 

• for the Colorado and Rio Grande River basins, where GSM precipitation forecast skill 

was poorest (worse than climatology for the strong ENSO forecasts), streamflow forecast 

skill was significantly degraded.   

Although the small sample of GSM and ESP forecasts on which the analysis was based made 

these results somewhat vulnerable to sampling misrepresentation and methodological choices, the 

general conclusion is that the GSM-based hydrologic forecasts lead to marginal skill 

improvements only during strong ENSO events, in parts of the western U.S. 

The quantitative assessment of ensemble climate forecasts, used for seasonal hydrologic 

forecasting via a statistical bias correction and downscaling approach, shows that at best, the skill 

added relative to the current ESP forecasting approach is insufficient to justify its use 

operationally.  Published climate forecasting skill assessments for other global forecast models 

implemented for seasonal climate forecasting suggest that these results, which were particular to 

GSM, may in fact be more general.  Nonetheless, relative to weather forecasting, which has seen 

steady improvement in skill over the decades, operational seasonal climate forecasting is in its 

infancy, and there appear to be potential sources of predictability that are not fully exploited in 

the current generation of models. The results for strong ENSO event conditions are encouraging 

in this respect.  As the skill of the climate forecasts improves in the future, the hydrologic 

forecasting approach presented here should serve as a useful framework for hydrologic forecast 

evaluation.  A cautionary note, however, is that future assessments of climate-model based 

forecast approaches will encounter difficulties, similar to some of those that surfaced in this 

research, related to the limited availability of retrospective forecasts and small forecast ensemble 

size.  The exploration of a wider range of skill assessment metrics (perhaps including non-

parametric and linear error scores that are less vulnerable to small sample biases), however, may 

strengthen a future assessment’s conclusions in the face of such obstacles. 

In the near term, this work suggests the potential of two alternative avenues for improvements in 

seasonal hydrologic forecast skill beyond that achieved with the climate model ensembles.  First, 
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given that most of the hydrologic forecast skill was derived from the predictable evolution of 

hydrologic initial conditions rather than climate forecast skill, it makes sense to exploit as much 

information as possible from observations that could help improve estimates of hydrologic state 

variables prior to and at the time of a forecast.  One such approach (a logical extension of current 

practices) is to use the hydrologic model to assimilate newly available snow remote sensing 

products, coupled with better use of surface measurements (such as the SNOTEL network of 

snow water equivalent observations).  Second, other operational seasonal climate forecast 

products (primarily hybrid, “consensus” products that combine dynamical and statistical 

techniques) exist that may have greater skill than the purely dynamical (climate) model forecasts.  

Although the hybrid forecasts’ quasi-subjective, evolving nature and limited retrospective 

availability hinders any robust assessment of their error characteristics, their more skillful 

verifications to date are promising.   
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